
MATRIXx TM

XmathTM Xµ Manual

MATRIXx Xmath Basics

The MATRIXx products and related items have been purchased from Wind
River Systems, Inc. (formerly Integrated Systems, Inc.). These reformatted user
materials may contain references to those entities. Any trademark or copyright
notices to those entities are no longer valid and any references to those entities
as the licensor to the MATRIXx products and related items should now be
considered as referring to National Instruments Corporation.

National Instruments did not acquire RealSim hardware (AC-1000, AC-104,
PCI Pro) and does not plan to further develop or support RealSim software.

NI is directing users who wish to continue to use RealSim software and hardware
to third parties. The list of NI Alliance Members (third parties) that can provide
RealSim support and the parts list for RealSim hardware are available in our
online KnowledgeBase. You can access the KnowledgeBase at
www.ni.com/support.

NI plans to make it easy for customers to target NI software and hardware,
including LabVIEW real-time and PXI, with MATRIXx in the future.
For information regarding NI real-time products, please visit
www.ni.com/realtime or contact us at matrixx@ni.com.

April 2004 Edition
Part Number 370760B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24,
Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000, Israel 972 0 3 6393737,
Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, Malaysia 603 9131 0918, Mexico 001 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150,
Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200,
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51,
Taiwan 886 2 2528 7227, Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support Resources and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
LabVIEW™, MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of National Instruments
Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

1 Introduction 1

1.1 Notation . 1

1.2 Manual Outline . 2

1.3 How to avoid really reading this Manual 3

2 Overview of the Underlying Theory 5

2.1 Introduction . 5

2.1.1 Notation . 6

2.1.2 An Introduction to Norms . 8

2.2 Modeling Uncertain Systems . 13

2.2.1 Perturbation Models for Robust Control 13

2.2.2 Linear Fractional Transformations 17

2.2.3 Assumptions on P , ∆, and the unknown signals 22

2.2.4 Additional Perturbation Structures 23

iii

iv CONTENTS

2.2.5 Obtaining Robust Control Models for Physical Systems 28

2.3 H∞ and H2 Design Methodologies . 29

2.3.1 H∞ Design Overview . 31

2.3.2 Assumptions for the H∞ Design Problem 32

2.3.3 A Brief Review of the Algebraic Riccati Equation 33

2.3.4 Solving the H∞ Design Problem for a Special Case 36

2.3.5 Further Notes on the H∞ Design Algorithm 38

2.3.6 H2 Design Overview . 40

2.3.7 Details of the H2 Design Procedure 40

2.4 µ Analysis . 42

2.4.1 Measures of Performance . 42

2.4.2 Robust Stability and µ . 44

2.4.3 Robust Performance . 46

2.4.4 Properties of µ . 47

2.4.5 The Main Loop Theorem . 49

2.4.6 State-space Robustness Analysis Tests 51

2.4.7 Analysis with both Real and Complex Perturbations 58

2.5 µ Synthesis and D-K Iteration . 58

2.5.1 µ-Synthesis . 58

2.5.2 The D-K Iteration Algorithm . 60

CONTENTS v

2.6 Model Reduction . 64

2.6.1 Truncation and Residualization . 65

2.6.2 Balanced Truncation . 65

2.6.3 Hankel Norm Approximation . 68

3 Functional Description of Xµ 71

3.1 Introduction . 71

3.2 Data Objects . 71

3.2.1 Dynamic Systems . 72

3.2.2 pdms . 74

3.2.3 Subblocks: selecting input & outputs 77

3.2.4 Basic Functions . 78

3.2.5 Continuous to Discrete Transformations 81

3.3 Matrix Information, Display and Plotting 81

3.3.1 Information Functions for Data Objects 81

3.3.2 Formatted Display Functions . 82

3.3.3 Plotting Functions . 82

3.4 System Response Functions . 85

3.4.1 Creating Time Domain Signals . 85

3.4.2 Dynamic System Time Responses 85

3.4.3 Frequency Responses . 88

vi CONTENTS

3.5 System Interconnection . 91

3.6 H2 and H∞ Analysis and Synthesis . 95

3.6.1 Controller Synthesis . 95

3.6.2 System Norm Calculations . 105

3.7 Structured Singular Value (µ) Analysis and Synthesis 107

3.7.1 Calculation of µ . 107

3.7.2 The D-K Iteration . 110

3.7.3 Fitting D Scales . 112

3.7.4 Constructing Rational Perturbations 120

3.7.5 Block Structured Norm Calculations 121

3.8 Model Reduction . 121

3.8.1 Truncation and Residualization . 122

3.8.2 Balanced Realizations . 123

3.8.3 Hankel Singular Value Approximation 125

4 Demonstration Examples 127

4.1 The Himat Example . 127

4.1.1 Problem Description . 127

4.1.2 State-space Model of Himat . 128

4.1.3 Creating a Weighted Interconnection Structure for Design 131

4.1.4 H∞ Design . 133

CONTENTS vii

4.1.5 µ Analysis of the H∞ Controller 138

4.1.6 Fitting D-scales for the D-K Iteration 140

4.1.7 Design Iteration #2 . 143

4.1.8 Simulation Comparison with a Loopshaping Controller 146

4.2 A Simple Flexible Structure Example . 153

4.2.1 The Control Design Problem . 153

4.2.2 Creating the Weighted Design Interconnection Structure 155

4.2.3 Design of an H∞ Controller . 162

4.2.4 Robustness Analysis . 165

4.2.5 D-K Iteration . 168

4.2.6 A Simulation Study . 173

5 Bibliography 192

6 Function Reference 201

6.1 Xµ Functions . 201

6.2 Xµ Subroutines and Utilities . 377

Appendices 391

A Translation Between Matlab µ-Tools and Xµ 391

A.1 Data Objects . 392

A.2 Matrix Information, Display and Plotting 397

viii CONTENTS

A.3 System Response Functions . 398

A.4 System Interconnection . 399

A.5 Model Reduction . 399

A.6 H2 and H∞ Analysis and Synthesis 399

A.7 Structured Singular Value (µ) Analysis and Synthesis 400

Chapter 1

Introduction

Xµ is a suite of Xmath functions for the modeling, analysis and synthesis of linear
robust control systems. Robust control theory has developed rapidly during the last
decade to the point where a useful set of computational tools can be used to solve a wide
range of control problems. This theory has already been applied to a wide range of
practical problems.

This manual describes the Xµ functions and presents a demonstration of their
application. The underlying theory is outlined here and further theoretical details can
be found in the many references provided.

It is assumed that the reader is familiar with the use of Xmath; the Xmath Basics
manual and the on-line demos are a good way of getting started with Xmath. A good
knowledge of control theory and application is also assumed. The more that is known
about robust control theory the better as the details are not all covered here.

1.1 Notation

Several font types or capitalization styles are used to distinguish between data objects.
The following table lists the various meanings.

1

2 CHAPTER 1. INTRODUCTION

Notation Meaning
pdm Xmath parameter dependent matrix data object
Dynamic System Xmath dynamic system data object

Code examples and function names are set in typewriter font to distinguish them from
narrative text.

1.2 Manual Outline

Chapter 2 outlines the applicable robust control theory. Perturbation models and linear
fractional transformations form the basis of the modeling framework. The discussion is
aimed at an introductory level and not all of the subtleties are covered. The theory
continues with an overview of the H∞ design technique. Again the reader is referred
elsewhere for detail of the theory. The robust control methodology covered here is based
on the analysis of systems with perturbations. This is covered in some detail as such an
understanding is required for effective use of this software. Repeated analysis can be
used to improve upon the synthesis; this takes us from the standard H∞ design method
to the more sophisticated µ-synthesis techniques.

The translation between the theoretical concepts and the use of the software is made in
Chapter 3. The means of performing typical robust control calculations are discussed in
some detail. This chapter also serves to introduce the Xµ functions. The discussion is
extended to include some of the relevant Xmath functions. A prior reading of Chapter 2
is helpful for putting this material in context.

The best means of getting an idea of the use of the software is to study completed design
examples, given in Chapter 4. These currently includes a design study for an aerospace
application. Typical modeling, analysis, synthesis, and simulation studies are illustrated.
These studies can be used as initial templates for the user’s application.

Chapter 6 is a function reference guide containing a formal description of each function.
This is similar to that given via the on-line help capability. Functions are listed in
relevant groupings at the start of the chapter. This gives an overview of some of the
software capabilities.

1.3. HOW TO AVOID REALLY READING THIS MANUAL 3

1.3 How to avoid really reading this Manual

The layout of the manual proceeds from introduction to background to syntax detail to
application descriptions. This may be tediously theoretical for some. If you are one of
those that considers reading the manual as the option of last resort1 then go directly to
the applications (Chapter 4). If you have no prior Xmath experience then skimming
through Chapter 3 is essential. After running the demos and getting a feel for what the
software can do look briefly through the theory section.

1And it seems that you are now exercising that option

Chapter 2

Overview of the Underlying
Theory

2.1 Introduction

The material covered here is taken from a variety of sources. The basic approach is
described by Doyle [1, 2], and further elaborated upon by Packard [3]. Summaries have
also appeared in work by Smith [4] and others.

Motivating background can be found in the early paper by Doyle and Stein [5]. An
overview of the robust control approach, particularly for process control systems, is
given by Morari and Zafiriou [6]. The reader can also find a description of the H∞/µ
synthesis robust control approach in [7].

There are a number of descriptions of this approach to practical problems. In the last
few years a significant number of these have been described in the proceedings of the
American Control Conference (ACC) and the IEEE Control and Decision Conference
(CDC). Only some of the early illustrative examples are cited here.

Application of µ synthesis to a shuttle control subsystem is given by Doyle et al. [8].
Examples of flexible structure control are described by Balas and
coworkers [9, 10, 11, 12] and Smith, Fanson and Chu [13, 14]. There have also been

5

6 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

several studies involving process control applications, particularly high purity distillation
columns. These are detailed by Skogestad and Morari in [15, 16, 17, 18]

Section 2.2 introduces robust control perturbation models and linear fractional
transformations. Weighted H∞ design is covered in Section 2.3. The analysis of closed
loop systems with the structured singular value (µ) is overviewed in Section 2.4.
Section 2.5 discusses µ synthesis and the D-K iteration. Model reduction is often used
to reduce the controller order prior to implementation and this is covered in Section 2.6.

2.1.1 Notation

We will use some fairly standard notation and this is given here for reference.

R set of real numbers
C set of complex numbers
Rn set of real valued vectors of dimension n × 1
Cn set of complex valued vectors of dimension n × 1
Rn×m set of real valued matrices of dimension n × m
Cn×m set of complex valued matrices of dimension n × m
In identity matrix of dimension n × n
0 matrix (or vector or scalar) of zeros of appropriate dimension

The following apply to a matrix, M ∈ Cn×m.

MT transpose of M
M∗ complex conjugate transpose of M
|M | absolute value of each element of M (also applies if M is a vector or scalar)
Re{M} real part of M
Im{M} imaginary part of M
dim(M) dimensions of M
σmax(M) maximum singular value of M
σmin(M) minimum singular value of M
Mij element of M in row i, column j. (also used for the i,j partition of a previously defined

partition of M)
λi(M) an eigenvalue of M
ρ(M) spectral radius (maxi |λi(M)|)
‖M‖ norm of M (see section 2.1.2 for more details)

2.1. INTRODUCTION 7

P21

P11

P22

P12

�-

�

� �y u

z v

Figure 2.1: The generic robust control model structure

Trace(M) trace of M (
∑n

i=1 Mii)

Block diagrams will be used to represent interconnections of systems. Consider the
example feedback interconnection shown in Fig. 2.1. Notice that P has been partitioned
into four parts. This diagram represents the equations,

z = P11v + P12u

y = P21v + P22u

v = ∆z.

This type of diagram (and the associated equations) will be used whenever the objects
P , z, y, etc., are well defined and compatible. For example P could be a matrix and z,
y, etc., would be vectors. If P represented a dynamic system then z, y, etc., would be
signals and

y = P21v + P22u,

8 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

is interpreted to mean that the signal y is the sum of the response of system P21 to
input signal v and system P22 to input signal u. In general, we will not be specific about
the representation of the system P . If we do need to be more specific about P , then
P (s) is the Laplace representation and p(t) is the impulse response.

Note that Figure 2.1 is drawn from right to left. We use this form of diagram because it
more closely represents the order in which the systems are written in the corresponding
mathematical equations. We will later see that the particular block diagram shown in
Figure 2.1 is used as a generic description of a robust control system.

In the case where we are considering a state-space representation, the following notation
is also used. Given P (s), with state-space representation,

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s),

we associate this description with the notation,

P (s) =
[

A B
C D

]
.

The motivation for this notation comes from the example presented in Section 2.2.4. We
will also use this notation to for state-space representation of discrete time systems
(where s in the above is replaced by z). The usage will be clear from the context of the
discussion.

2.1.2 An Introduction to Norms

A norm is simply a measure of the size of a vector, matrix, signal, or system. We will
define and concentrate on particular norms for each of these entities. This gives us a
formal way of assessing whether or not the size of a signal is large or small enough. It
allows us to quantify the performance of a system in terms of the size of the input and
output signals.

Unless stated otherwise, when talking of the size of a vector, we will be using the

2.1. INTRODUCTION 9

Euclidean norm. Given,

x =

 x1

...
xn

 ,

the Euclidean (or 2-norm) of x, denoted by ‖x‖, is defined by,

‖x‖ =

(
n∑

i=1

|xi|
)1/2

.

Many other norms are also options; more detail on the easily calculated norms can be
found in the on-line help for the norm function. The term spatial-norm is often applied
when we are looking at norms over the components of a vector.

Now consider a vector valued signal,

x(t) =

 x1(t)
...

xn(t)

 .

As well as the issue of the spatial norm, we now have the issue of a time norm. In the
theory given here, we concentrate on the 2-norm in the time domain. In otherwords,

‖xi(t)‖ =
(∫ ∞

−∞
|xi(t)|2 dt

)1/2

.

This is simply the energy of the signal. This norm is sometimes denoted by a subscript
of two, i.e. ‖xi(t)‖2. Parseval’s relationship means that we can also express this norm in
the Laplace domain as follows,

‖xi(s)‖ =
(

1
2π

∫ ∞

−∞
|xi(ω)|2 dω

)1/2

.

10 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

For persistent signals, where the above norm is unbounded, we can define a power norm,

‖xi(t)‖ =

(
lim

T→∞
1

2T

∫ T

−T

|xi(t)|2 dt

)1/2

. (2.1)

The above norms have been defined in terms of a single component, xi(t), of a vector
valued signal, x(t). The choice of spatial norm determines how we combine these
components to calculate ‖x(t)‖. We can mix and match the spatial and time parts of the
norm of a signal. In practice it usually turns out that the choice of the time norm is
more important in terms of system analysis. Unless stated otherwise, ‖x(t)‖ implies the
Euclidean norm spatially and the 2-norm in the time direction.

Certain signal spaces can be defined in terms of their norms. For example, the set of
signals x(t), with ‖x(t)‖2 finite is denoted by L2. The formal definition is,

L2 =
{

x(t)
∣∣∣∣ ‖x(t)‖ < ∞

}
.

A similar approach can be taken in the discrete-time domain. Consider a sequence,
{x(k)}∞k=0, with 2-norm given by,

‖x(k)‖2 =

(∞∑
k=0

|x(k)|2
)1/2

.

A lower case notation is used to indicate the discrete-time domain. All signals with finite
2-norm are therefore,

l2 =
{

x(k), k = 0, . . . ,∞
∣∣∣∣ ‖x(k)‖2 < ∞

}
.

We can essentially split the space L2 into two pieces, H2 and H⊥
2 . H2 is the set of

elements of L2 which are analytic in the right-half plane. This can be thought of as
those which have their poles strictly in the left half plane; i.e. all stable signals.
Similarly, H⊥

2 are all signal with their poles in the left half plane; all strictly unstable

2.1. INTRODUCTION 11

signals. Strictly speaking, signals in H2 or H⊥
2 are not defined on the ω axis. However

we usually consider them to be by taking a limit as we approach the axis.

A slightly more specialized set is RL2, the set of real rational functions in L2. These are
strictly proper functions with no poles on the imaginary axis. Similarly we can consider
RH2 as strictly proper stable functions and RH⊥

2 as strictly proper functions with no
poles in Re(s)< 0. The distinction between RL2 and L2 is of little consequence for the
sorts of analysis we will do here.

The concept of a unit ball will also come up in the following sections. This is simply the
set of all signals (or vectors, matrices or systems) with norm less than or equal to one.
The unit ball of L2, denoted by BL2, is therefore defined as,

BL2 =
{

x(t)
∣∣∣∣ ‖x(t)‖2 < 1

}
.

Now let’s move onto norms of matrices and systems. As expected the norm of a matrix
gives a measure of its size. We will again emphasize only the norms which we will
consider in the following sections. Consider defining a norm in terms of the maximum
gain of a matrix or system. This is what is known as an induced norm. Consider a
matrix, M , and vectors, u and y, where

y = Mu.

Define, ‖M‖, by

‖M‖ = max
u,‖u‖<∞

‖y‖
‖u‖ .

Because M is obviously linear this is equivalent to,

‖M‖ = max
u,‖u‖=1

‖y‖.

The properties of ‖M‖ will depend on how we define the norms for the vectors u and y.
If we choose our usual default of the Euclidean norm then ‖M‖ is given by,

‖M‖ = σmax(M),

12 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

where σmax denotes the maximum singular value. Not all matrix norms are induced
from vector norms. The Froebenius norm (square root of the sum of the squares of all
matrix elements) is one such example.

Now consider the case where P (s) is a dynamic system and we define an induced norm
from L2 to L2 as follows. In this case, y(s) is the output of P (s)u(s) and

‖P (s)‖ = max
u(s)∈L2

‖y(s)‖2

‖u(s)‖2

.

Again, for a linear system, this is equivalent to,

‖P (s)‖ = max
u(s)∈BL2

‖y(s)‖2 .

This norm is called the ∞-norm, usually denoted by ‖P (s)‖∞. In the single-input,
single-output case, this is equivalent to,

‖P (s)‖∞ = ess sup
ω

|P (ω)|.

This formal definition uses the term ess sup, meaning essential supremum. The
“essential” part means that we drop all isolated points from consideration. We will
always be considering continuous systems so this technical point makes no difference to
us here. The “supremum” is conceptually the same as a maximum. The difference is
that the supremum also includes the case where we need to use a limiting series to
approach the value of interest. The same is true of the terms “infimum” (abbreviated to
“inf”) and “minimum.” For practical purposes, the reader can think instead in terms of
maximum and minimum.

Actually we could restrict u(s) ∈ H2 in the above and the answer would be the same. In
other words, we can look over all stable input signals u(s) and measure the 2-norm of
the output signal, y(s). The subscript, ∞, comes from the fact that we are looking for
the supremum of the function on the ω axis. Mathematicians sometimes refer to this
norm as the “induced 2-norm.” Beware of the possible confusion when reading some of
the mathematical literature on this topic.

If we were using the power norm above (Equation 2.1) for the input and output norms,
the induced norm is still ‖P (s)‖∞.

2.2. MODELING UNCERTAIN SYSTEMS 13

The set of all systems with bounded ∞-norm is denoted by L∞. We can again split this
into stable and unstable parts. H∞ denotes the stable part; those systems with |P (s)|
finite for all Re(s)> 0. This is where the name “H∞ control theory” originates, and we
often call this norm the H∞-norm. Again we can restrict ourselves to real rational
functions, so RL∞ is the set of proper transfer functions with no poles on the ω axis.
Similary, RH∞ is the set of proper, stable transfer functions.

Again, we are free to choose a spatial norm for the input and output signals u(s) and
y(s). In keeping with our above choices we will choose the Euclidean norm. So if P (s) is
a MIMO system, then,

‖P (s)‖∞ = sup
ω

σmax[P (ω)].

There is another choice of system norm that will arise in the following sections. This is
the H2-norm for systems, defined as,

‖P (s)‖2 =
(

1
2π

∫ ∞

−∞
Trace[P (ω)∗P (ω)]dω

)1/2

,

where P (ω)∗ denotes the conjugate transpose of P (ω) and the trace of a matrix is the
sum of its diagonal elements. This norm will come up when we are considering linear
quadratic Gaussian (LQG) problems.

2.2 Modeling Uncertain Systems

2.2.1 Perturbation Models for Robust Control

A simple example will be used to illustrate the idea of a perturbation model. We are
interested in describing a system by a set of models, rather than just a nominal model.
Our uncertainty about the physical system will be represented in an unknown
component of the model. This unknown component is a perturbation, ∆, about which
we make as few assumptions as possible; maximum size, linearity, time-invariance, etc..

Every different perturbation, ∆, gives a slightly different system model. The complete

14 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

robust control model is therefore a set description and we hope that some members of
this set capture some of the uncertain or unmodeled aspects of our physical system.

For example, consider the “uncertain” model illustrated in Figure 2.2. This picture is
equivalent to the input-output relationship,

y = [(I + ∆Wm)Pnom] u. (2.2)

� Wm

Pnom
m+� � �s

��

?y u

Figure 2.2: Generic output multiplicative perturbation model

In this figure, ∆, Wm and Pnom are dynamic systems. The most general form for the
theory can be stated with these blocks as elements of H∞. For the purposes of
calculation we will be dealing with Xmath Dynamic Systems, and in keeping with this
we will tend to restrict the theoretical discussion to RH∞, stable, proper real rational
transfer function matrices.

The only thing that we know about the perturbation, ∆, is that ‖∆‖∞ ≤ 1. Each ∆,
with ‖∆‖∞ ≤ 1 gives a different transfer function between u and y. The set of all
possible transfer functions, generated in this manner, is called P . More formally,

P =
{

(I + ∆Wm)Pnom

∣∣∣∣ ‖∆‖∞ ≤ 1
}

. (2.3)

Now we are looking at a set of possible transfer functions,

y(s) = P (s)u(s),

where P (s) ∈ P .

Equation 2.2 represents what is known as a multiplicative output perturbation
structure. This is perhaps one of the easiest to look at initially as W (s) can be viewed

2.2. MODELING UNCERTAIN SYSTEMS 15

as specifying a maximum percentage error between Pnom and every other element of P .
The system Pnom(s) is the element of P that comes from ∆ = 0 and is called the
nominal system. In otherwords, for ∆ = 0, the input-output relationship is
y(s) = Pnom(s)u(s). As ∆ deviates from zero (but remains bounded in size), the
nominal system is multiplied by (I + ∆Wm(s)). Wm(s) is a frequency weighting function
which allows us the specify the maximum effect of the perturbation for each frequency.
Including Wm(s) allows us to model P with ∆ being bounded by one. Any
normalization of ∆ is simply included in Wm(s).

We often assume that ∆ is also linear and time-invariant. This means that ∆(ω) is
simply an unknown, complex valued matrix at each frequency, ω. If ‖∆‖∞ ≤ 1, then, at
each frequency, σmax(∆(ω)) ≤ 1. Section 2.2.3 gives a further discussion on the pros
and cons of considering ∆ to be linear, time-invariant.

Now consider an example of this approach from a Nyquist point of view. A simple first
order SISO system with multiplicative output uncertainty is modeled as

y(s) =
[
(I + Wm(s)∆)Pnom(s)

]
u(s),

where

Pnom(s) =
1 + 0.05s

1 + s
and Wm(s) =

0.1 + 0.2s

1 + 0.05s
.

Figure 2.3 illustrates the set of systems generated by a linear time-invariant ∆,
‖∆‖∞ ≤ 1.

At each frequency, ω, the transfer function of every element of P , lies within a circle,
centered at Pnom(ω), of radius |Pnom(ω)Wm(ω)|. Note that for certain frequencies the
disks enclose the origin. This allows us to consider perturbed systems that are
non-minimum phase even though the nominal system is not.

It is worth pointing out that P is still a model; in this case a set of regions in the
Nyquist plane. This is model set is now able to describe a larger set of system behaviors
than a single nominal model. There is still an inevitable mismatch between any model
(robust control model set or otherwise) and the behaviors of a physical system.

16 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Real

0 0.5 1-0.5 1.5

Im
ag

in
ar

y

-0.5

0

0.5

-1

1

Figure 2.3: Nyquist diagram of the set of systems, P

2.2. MODELING UNCERTAIN SYSTEMS 17

� Wa

P0j+u u j+
�

�

6

��

��

?

�

y u r

Figure 2.4: Unity gain negative feedback for the example system, P0 + ∆Wa

2.2.2 Linear Fractional Transformations

A model is considered to be an interconnection of lumped components and perturbation
blocks. In this discussion we will denote the input to the model by u, which can be a
vector valued signal representing input signals such as control inputs, disturbances, and
noise. The outputs signal, denoted in this discussion by y, are also vector valued and can
represent system outputs and other variables of interest.

In order to treat large systems of interconnected components, it is necessary to use a
model formulation that is general enough to handle interconnections of systems. To
illustrate this point consider an affine model description:

y = (P0 + ∆Wa)u, ‖∆‖∞ ≤ 1, (2.4)

where u is the input and y is the output. ∆ again represents an unknown but bounded
perturbation. This form of perturbed model is known as an additive perturbation
description. While such a description could be applied to a large class of linear systems,
it is not general enough to describe the interconnection of models. More specifically, an
interconnection of affine models is not necessarily affine. To see this, consider unity gain
positive feedback around the above system. This is illustrated in Figure 2.4.

The new input-output transfer function is

y = (P0 + ∆Wa)[I + (P0 + ∆Wa)]−1 r. (2.5)

It is not possible to represent the new system with an affine model. Note that stability
questions arise from the consideration of the invertibility of [I + (P0 + ∆Wa)].

18 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

P21

P11

P22

P12

�1

�m

.
.
.

-

�

� �y u

z v

Figure 2.5: Generic LFT model structure including perturbations,∆

A generic model structure, referred to as a linear fractional transformation (LFT),
overcomes the difficulties outlined above. The LFT model is equivalent to the
relationship,

y =
[
P21∆(I − P11∆)−1P12 + P22

]
u, (2.6)

where the ∆ is the norm bounded perturbation. Figure 2.5 shows a block diagram
equivalent to the system described by Equation 2.6. Because this form of interconnection
is widely used, we will give it a specific notation. Equation 2.6 is abbreviated to,

y = Fu(P, ∆)u.

The subscript, u, indicates that the ∆ is closed in the upper loop. We will also use
Fl(., .) when the lower loop is closed.

In this figure, the signals, u, y, z and v can all be vector valued, meaning that the
partitioned parts of P , (P11, etc.) can themselves be matrices of transfer functions.

To make this clear we will look at the perturbed system example, given in Equation 2.4,

2.2. MODELING UNCERTAIN SYSTEMS 19

in an LFT format. The open-loop system is described by,

y = Fu(Polp, ∆)u,

where

Polp =
[

0 Wa

I P0

]
.

The unity gain, negative feedback configuration, illustrated in Figure 2.4 (and given in
Equation 2.5) can be described by,

y = Fu(Gclp, ∆)r,

where

Gclp =
[−Wa(I + P0)−1 Wa(I + P0)−1

(I + P0)−1 P0(I + P0)−1

]

Figure 2.5 also shows the perturbation, ∆ as block structured. In otherwords,

∆ = diag(∆1, . . . ,∆m). (2.7)

This allows us to consider different perturbation blocks in a complex interconnected
system. If we interconnect two systems, each with a ∆ perturbation, then the result can
always be expressed as an LFT with a single, structured perturbation. This is a very
general formulation as we can always rearrange the inputs and outputs of P to make ∆
block diagonal.

The distinction between perturbations and noise in the model can be seen from both
Equation 2.6 and Figure 2.5. Additive noise will enter the model as a component of u.
The ∆ block represents the unknown but bounded perturbations. It is possible that for
some ∆, (I − P11∆) is not invertible. This type of model can describe nominally stable
systems which can be destabilized by perturbations. Attributing unmodeled effects
purely to additive noise will not have this characteristic.

20 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

The issue of the invertibility of (I − P11∆) is fundamental to the study of the stability of
a system under perturbations. We will return to this question in much more detail in
Section 2.4. It forms the basis of the µ analysis approach.

Note that Equation 2.7 indicates that we have m blocks, ∆i, in our model. For
notational purposes we will assume that each of these blocks is square. This is actually
without loss of generality as in all of the analysis we will do here we can square up P by
adding rows or columns of zeros. This squaring up will not affect any of the analysis
results. The software actually deals with the non-square ∆ case; we must
specify the input and output dimensions of each block.

The block structure is a m-tuple of integers, (k1, . . . , km), giving the dimensions of each
∆i block. It is convenient to define a set, denoted here by ∆, with the appropriate block
structure representing all possible ∆ blocks, consistent with that described above. By
this it is meant that each member of the set of ∆ be of the appropriate type (complex
matrices, real matrices, or operators, for example) and have the appropriate dimensions.
In Figure 2.5 the elements P11 and P12 are not shown partitioned with respect to the
∆i. For consistency the sum of the column dimensions of the ∆i must equal the row
dimension of P11. Now define ∆ as

∆ =
{
diag (∆1, . . . ,∆m)

∣∣∣ dim(∆i) = ki × ki

}
.

It is assumed that each ∆i is norm bounded. Scaling P allows the assumption that the
norm bound is one. If the input to ∆i is zi and the output is vi, then

‖vi‖ = ‖∆izi‖ ≤ ‖zi‖.

It will be convenient to denote the unit ball of ∆, the subset of ∆ norm bounded by
one, by B∆. More formally

B∆ =
{
∆ ∈ ∆

∣∣∣ ‖∆‖ ≤ 1
}

.

Putting all of this together gives the following abbreviated representation of the
perturbed model,

y = Fu(P, ∆)u, ∆ ∈ B∆. (2.8)

2.2. MODELING UNCERTAIN SYSTEMS 21

Wn � Wu

Pnomj+ j+ u ��

��

?

��

?

?

y

w

u

Figure 2.6: Example model: multiplicative output perturbation with weighted output
noise

References to a robust control model will imply a description of the form given in
Equation 2.8.

As a example, consider one of the most common perturbation model descriptions,
illustrated in Figure 2.6. This model represents a perturbed system with bounded noise
at the output.

The example model is given by,

y = Wnw + (I + ∆Wu)Pnomu.

The system Wn is a frequency dependent weight on the noise signal, w. This allows us
to use a normalized representation for w. In other words the model includes the
assumption that ‖w‖∞ ≤ 1. Similarly, we assume that ‖∆‖∞ ≤ 1 and Wu is a frequency
dependent weight which specifies the contribution of the perturbation at each frequency.
In a typical model Wn will be small (assuming that the noise is small compared to the
nominal output) and Wu will increase at high frequencies (to capture the likely case that
we know less about the model at higher frequencies). The LFT representation of this
model is,

y = Fu(P, ∆)
[

w
u

]
,

where

P =

[
0 0 WuPnom

I Wn Pnom

]

22 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Robust control models are therefore set descriptions. In the analysis of such models it is
also assumed that the unknown inputs belong to some bounded set. Several choices of
set for the unknown signals can be made, leading to different mathematical problems for
the analysis. Unfortunately not all of them are tractable. The following section discusses
the assumptions typically applied to the robust control models.

2.2.3 Assumptions on P , ∆, and the unknown signals

It will be assumed that the elements of P are either real-rational transfer function
matrices or complex valued matrices. The second case arises in the frequency by
frequency analysis of systems.

In modeling a system, P22 defines the nominal model. Input/output effects not
described by the nominal model can be attributed to either unknown signals which are
components of the model input (w in the previous example), or the perturbation ∆.
Unmodeled effects which can destabilize a system should be accounted for in ∆. The ∆
can loosely be considered as accounting for the following. This list is by no means
definitive and is only included to illustrate some of the physical effects better suited to
description with ∆.

• Unmodeled dynamics. Certain dynamics may be difficult to identify and there
comes a point when further identification does not yield significant design
performance improvement.

• Known dynamics which have been bounded and included in ∆ to simplify the
model. As the controller complexity depends on the order of the nominal model a
designer may not wish to explicitly include all of the known dynamics.

• Parameter variations in a differential equation model. For example linearization
constants which can vary over operating ranges.

• Nonlinear or inconsistent effects. At some point a linear model will no longer
account for the residual differences between the behaviors of the model and the
physical system.

Several assumptions on ∆ are possible. In the most general case ∆ is a bounded
operator. Alternatively ∆ can be considered as a linear time varying multiplier. This
assumption can be used to capture nonlinear effects which shift energy between
frequencies. Analysis and synthesis are possible with this assumption; Doyle and

2.2. MODELING UNCERTAIN SYSTEMS 23

Packard [19] discuss the implications of this assumption on robust control theory and we
briefly touch upon this in Section 2.4.6. The most common assumption is that ∆ is an
unknown, norm-bounded, linear time-invariant system.

Systems often do not fall neatly into one of the usual choices of ∆ discussed above.
Consider a nonlinear system linearized about an operating point. If a range of operation
is desired then the linearization constants can be considered to lie within an interval.
The model will have a ∆ block representing the variation in the linearization constants.
If this is considered to be a fixed function of frequency then the model can be considered
to be applicable for small changes about any operating point in the range. The precise
meaning of small will depend on the effect of the other ∆ blocks in the problem.

If the ∆ block is assumed to be time-varying then arbitrary variation is allowed in the
operating point. However this variation is now arbitrarily fast, and the model set now
contains elements which will not realistically correspond to any observed behavior in the
physical system.

The robust control synthesis theory gives controllers designed to minimize the maximum
error over all possible elements in the model set. Including non-physically motivated
signals or conditions can lead to a conservative design as it may be these signals or
conditions that determine the worst case error and consequently the controller.
Therefore the designer wants a model which describes all physical behaviors of the
system but does not include any extraneous elements.

The designer must select the assumptions on P and ∆. An inevitable tradeoff arises
between the ideal assumptions given the physical considerations of the system, and those
for which good synthesis techniques exist.

The most commonly used assumption is that ∆ is a linear time invariant system. This
allows us to consider the interconnection, Fu(P, ∆), from a frequency domain point of
view. At each frequency ∆ can be taken as an unknown complex valued matrix of norm
less than or equal to one. This leads to analyses (covered in Section 2.4) involving the
complex structured singular value. The following section discusses more complicated
block structures and their use in modeling uncertain systems.

2.2.4 Additional Perturbation Structures

Equation 2.7 introduced a perturbation structure, ∆ containing m perturbation blocks,
∆i. This form of perturbation is applicable to a wide range of models for uncertain

24 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

systems. We will now look at other possible perturbation structures. For more detail on
these structures (in the complex case) refer to Packard and Doyle [20].

Consider a blocks which are of the form scalar × identity, where the scalar is unknown.
In the following we will include q of these blocks in ∆. The definition of ∆ is therefore
modified to be,

∆ =
{
diag(δ1I1, . . . , δqIq, ∆1, . . . ,∆m)

∣∣∣ dim(Ij) = lj × lj , dim(∆i) = ki × ki

}
.(2.9)

The block structure now contains the dimension of the q scalar × identity blocks and the
m full blocks. The block structure is therefore, (l1, . . . , lq, k1, . . . , km). If
dim(∆) = n × n, then these dimensions must be consistent. In otherwords,

q∑
j=1

lj +
m∑

i=1

ki = n.

Note that this block structure collapses to the previously defined structure
(Equation 2.7) when q = 0.

The most obvious application of a repeated scalar block structure occurs when we know
that perturbations occurring in several places in a system are identical (or perhaps just
correlated). For example, dynamic models of aircraft often have the altitude (or
dynamic pressure) occuring in several places in the model. Naturally the same value
should be used in each place and if we model the altitude as an LFT parameter then the
repeated scalar × identity approach is the most appropriate.

This structure also allows us to express uncertain state-space models as LFTs. To
illustrate this consider the following discrete time system.

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

This digital system has transfer function,

P (z) = C(zI − A)−1B + D

2.2. MODELING UNCERTAIN SYSTEMS 25

= Cz−1(I − z−1A)−1B + D

= Fu(Pss, z
−1I),

where Pss is the real valued matrix,

Pss =
[

A B
C D

]
,

and the scalar × identity, z−1I, has dimension equal to the state dimension of P (z).
This is now in the form of an LFT model with a single scalar × identity element in the
upper loop.

One possible use of this is suggested by the following. Define,

∆ =
{
δInx

∣∣ δ ∈ C} ,

where nx is the state dimension. The set of models,

Fu(Pss, ∆), ∆ ∈ B∆,

is equivalent to P (z), |z| ≥ 1. This hints at using this formulation for a stability analysis
of P (z). This is investigated further in Section 2.4.6.

In the analyses discussed in Section 2.4 we will concentrate on the assumption that ∆ is
complex valued at each frequency. For some models we may wish to restrict ∆ further.
The most obvious restriction is that some (or all) of the ∆ blocks are real valued. This is
applicable to the modeling of systems with uncertain, real-valued, parameters. Such
models can arise from mathematical system models with unknown parameters.

Consider, for example a very simplified model of the combustion characteristics of an
automotive engine. This is a simplified version of the model given by Hamburg and
Shulman [21]. The system input to be considered is the air/fuel ratio at the carburettor.
The output is equivalent to the air/fuel ratio after combustion. This is measured by an
oxygen sensor in the exhaust. Naturally, this model is a strong function of the engine
speed, v (rpm). We model the relationship as,

y = e−Tds

(
0.9

1 + Tcs
+

0.1
1 + s

)
u,

26 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

where the transport delay, Td, and the combustion lag, Tc, are approximately,

Td =
252
v

and Tc =
202
v

.

For the purposes of our example we want to design an air/fuel ratio controller that
works for all engine speeds in the range 2,000 to 6,000 rpm. We will use a first order
Padé approximation for the delay and express the Td and Tc relationships in an LFT
form with a normalized speed deviation, δv.

The dominant combustion lag can be expressed as an LFT on 1/Tc as follows,

0.9
1 + Tcs

= Fu(Ptc, T
−1
c),

where

Ptc =

 −1
s 1

0.9
s 0

 .

Note that T−1
c is easily modeled in terms of δv,

1
Tc

=
4000 + 2000δv

202
, δv ∈ R, |δv| ≤ 1.

The Padé approximation (with delay time, Td) is given by

e−Tds ≈ Fu

(
Pdelay , T−1

d

)
,

where,

Pdelay =

 −2
s 1

4
s −1

 .

2.2. MODELING UNCERTAIN SYSTEMS 27

Putting all the pieces together gives an engine model in the following fractional form.

P (s) = Fu(Pmod, ∆),

where

Pmod =


−15.87

s
7.14(s− 19.8)

s2
141.5(1 + 1.006s)

s(s + 1)

0 −9.9
s 9.9

−27.75
s

−0.9(s − 15.8)(s− 19.8)
s3

−17.82(s− 15.8)(1 + 1.006s)
s(s + 1)

 ,

and ∆ ∈ B∆, with the structure defined as,

∆ =
{

δvI2

∣∣ δv ∈ R} .

To capture the effects of unmodeled high frequency dynamics we will also include an
output multiplicative perturbation. If the output multiplicative weight is Wm(s) then
the complete open-loop model is,

P (s) = Fu(Pmod, ∆), (2.10)

where,

Pmod =



−15.87
s

7.14(s− 19.8)
s2 0 141.5(1 + 1.006s)

s(s + 1)

0 −9.9
s 0 9.9

−27.75
s

−0.9(s − 15.8)(s− 19.8)
s3 0 −17.82(s− 15.8)(1 + 1.006s)

s(s + 1)

−27.75
s

−0.9(s − 15.8)(s− 19.8)
s3 Wm(s) −17.82(s− 15.8)(1 + 1.006s)

s(s + 1)



28 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

and ∆ ∈ B∆, with the structure defined as,

∆ =
{

diag(δvI2, ∆1)
∣∣∣∣ δv ∈ R, ∆1 ∈ C

}
.

Note that this is an LFT with a repeated real-valued parameter, δv (|δv| ≤ 1), and a
complex perturbation, ∆1 (|∆1| ≤ 1).

Note that as R ⊂ C, assuming that ∆ ∈ Cn×n, always covers the case where some of the
∆i (or δj) are more appropriately modeled as real-valued. However this may be
potentially conservative as the ∆ ∈ Cn×n, allows many more systems in the model set.
In this case it would be somewhat better to consider combining the effects of δv and ∆1

into a single complex valued ∆ with an appropriate weight.

In principle, if we have additional information about the system (some δj ∈ R, for
example) then we should use this information. Performing analyses with real valued
perturbations is currently at the forefront of the structured singular value research. We
will return to this issue in more detail when we cover the analysis methods (Section 2.4).

2.2.5 Obtaining Robust Control Models for Physical Systems

Obtaining a model of the above form is where the real engineering comes in. A designer
must model and identify the physical system to arrive at such a model. This is usually
an iterative process whereby designs are performed and then tested on the system. In
this way the designer often obtains a feeling for the adequacy of the model.

The best way of studying the modeling problem is to look at the documented
experiences of others applying these approaches; particularly in similar applications. The
citations given in the Section 2.1 will be useful in this regard. There are also approaches
addressing the problem of obtaining LFT models from descriptions with variable
state-space matrix coefficients [22, 23]. In the area of SISO process control, Laughlin et
al. [24] describe the relationship between uncertainties in time constant, delay, and gain,
and a suitable ∆ weighting. Models of this form are often applicable to process control.

There is little formal theory addressing the robust control modeling problem although
this is an area of increasing interest. A recent workshop proceedings volume on the
subject is an excellent reference for those interested in this area [25]. Other references
can be found in the review article by Gevers [26].

2.3. H∞ AND H2 DESIGN METHODOLOGIES 29

An area of work, known as identification in H∞, looks at experimental identification
techniques which minimize the worst case H∞ error between the physical system and
the model. The following works address this issue: [27, 28, 29, 30, 31, 32, 33, 34, 35].

Applying the more standard, probabilistically based, identification techniques to
uncertain systems is also receiving attention. Relevant work in this area is described
in: [36, 37, 38, 39]

Model validation is the experimental testing of a given robust control model. This can
be useful is assessing model quality. This work is covered in the
following: [4, 40, 41, 42, 43, 44, 45, 46]. An experimental example is described by
Smith [47].

The problems of identifying model parameters in an uncertain model is discussed further
in [48, 49, 50]. A nonlinear ad-hoc approach for obtaining suitable multiplicative
perturbation models for certain classes of systems is given in [51].

Several researchers are also formalizing the interplay between identification and design
in iterative approaches. In practical situations the designer usually ends up with ad-hoc
identification/design iterations. The work in this area is described in [52, 53, 54, 55, 56].

On reading the above works, one will get the impression that this area is the most
poorly developed of the current robust control theory. In obtaining these models
engineering judgement is of paramount importance. The users of this software are
encouraged to document their experiences and bring this work to the authors’ attention.

2.3 H∞ and H2 Design Methodologies

The generic synthesis configuration is illustrated in LFT form in Figure 2.7. Here P (s)
is referred to as the interconnection structure. The objective is to design K(s) such that
the closed loop interconnection is stable and the resulting transfer function from w to e
(denoted by G(s)),

e = Fl[P (s), K(s)]w,

= G(s)w,

satisfies a norm objective.

30 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

P (s)

K(s)

� �

-

�

e w

y u

Figure 2.7: LFT configuration for controller synthesis, G(s) = Fl[P (s), K(s)]

Note that the interconnection structure, P (s), given here, differs from that discussed in
the previous section. Here we set up P (s) so that the input, w, is the unknown signals
entering our system. Typical examples would be sensor noise, plant disturbances or
tracking commands. The output, e, represent signals that we would like to make small.
In an engineering application these could include actuator signals and tracking errors.

The signal y is the measurement available to the controller, K(s). In any realistic
problem, some weighted component of w would be added to y to model sensor noise.
The output of the controller, u, is our actuation input to the system. Again, a
reasonable engineering problem would include a weighted u signal as a component of the
penalty output, e.

The interconnection structure, P (s), also contains any frequency weightings on the
signals e and w. Weightings on components of e are used to determine the relative
importance of the various error signals. Weight functions on w indicate the relative
expected size of the unknown inputs.

Xµ provides functions to calculate the controllers minimizing either the H2 or H∞ norm
of G(s). We will cover both of these approaches in the context of the design problem
illustrated in Figure 2.7.

Note that neither of these design approaches takes advantage of any information about
structured perturbations occuring within the model. The following discussion can be
considered as applying to a nominal design problem. Section 2.5 uses D-K iteration to

2.3. H∞ AND H2 DESIGN METHODOLOGIES 31

extend these approaches to the case where P (s) is replaced by Fu(P (s), ∆), ∆ ∈ B∆.

2.3.1 H∞ Design Overview

Again, recall from Section 2.1.2, the H∞ is norm of G(s) is,

‖G(s)‖∞ = sup
ω

σmax[G(ω)].

The H∞ norm is the induced L2 to L2 norm. Therefore minimizing the H∞ norm of
G(s) will have the effect of minimizing the worst-case energy of e over all bounded
energy inputs at w.

Consider γ(K) to be the closed loop H∞ norm achieved for a particular controller K. In
other words,

γ(K) = ‖Fl(P, K)‖∞.

There is a choice of controller, K, which minimizes γ(K). This is often referred to as the
optimal value of γ and is denoted by γopt. Furthermore, there is no stabilizing controller
which satisfies,

‖G(s)‖∞ < γopt.

In a particular design problem, γopt is not known a priori. Therefore the functions
calculating the H∞ controller use some form of optimization to obtain a value of γ close
to γopt.

The first approaches to the solution of this problem were described by Doyle [1]. The
book by Francis [57] gives a good overview of the early version of this theory. A
significant breakthrough was achieved with the development of state-space calculation
techniques for the problem. These are discussed in the paper colloquially known as
DGKF [58]. The algorithmic details are actually given by Glover and Doyle [59].

32 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

2.3.2 Assumptions for the H∞ Design Problem

There are several assumptions required in order to achieve a well-posed design problem.
The DGKF paper gives a state-space solution to the H∞ design problem and we will use
a similar notation here.

Consider the open loop state-space representation of P (s), partitioned according to the
signals shown in Figure 2.7,

P (s) =

 A B1 B2

C1

C2

D11 D12

D21 D22

. (2.11)

We will assume that P (s) is a minimal representation. The following assumptions are
required for a well-posed problem.

(i) (A, B2) is stabilizable and (C2, A) is detectable;

(ii) D12 and D21 are full rank;

(iii) The matrix,[
A − ωI B2

C1 D12

]
,

has full column rank for all ω ∈ R;

(iv) The matrix,[
A − ωI B1

C2 D21

]
,

has full row rank for all ω ∈ R.

Item (i) is required so that input-output stability is equivalent to internal stability. If it
is not satisfied then there are unstable modes which cannot be stabilized by any K(s).

Items (ii) and (iii) mean that, at every frequency, there is no component of the output
signal, e, that cannot be influenced by the controller. Similarly, items (ii) and (iv) mean

2.3. H∞ AND H2 DESIGN METHODOLOGIES 33

that the effect of all disturbances, w, at every frequency, can be measured by the
controller. If either of these conditions are not met then the problem could be ill-posed.

It is possible to violate these conditions by using pure integrators as design weights.
While this could still give a meaningful design problem, solution via the state-space H∞
approach requires that an approximation be used for the integrator weight. If item (iii)
or (iv) is violated at ω = 0, then the integrator should be replaced with very low
frequency pole.

2.3.3 A Brief Review of the Algebraic Riccati Equation

Solution of the H∞ design problem requires the solution of coupled Algebraic Riccati
Equations (AREs). This is illustrated in more detail in the next section. Here we give a
very brief review of the Riccati equation and the most common solution techniques.
Some knowledge of this area is helpful because the design software displays variables
related to the Riccati solutions and the user has the option of adjusting several software
tolerances relating to these solutions. The notation used here comes from DGKF [58].

The matrix equation,

AT X + XA + XRX − Q = 0,

is an ARE. Given A, R and Q (with R and Q symmetric), we are interested in finding a
symmetric positive definite solution, X . In other words, X = XT ≥ 0. With this ARE
we associate a Hamiltonian matrix, denoted by H ,

H =
[

A R
Q −AT

]
.

If dim(A) = n × n, then dim(H) = 2n × 2n. Assume that H has no ω axis eigenvalues.
The structure of H means that it has n stable (Re{s} < 0) and n unstable (Re{s} > 0)
eigenvalues.

Now consider finding a basis for the stable eigenvalues. Stacking the basis vectors
together will give a 2n × n matrix,

[
X1
X2

]
.

34 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

We have partitioned the matrix into two n × n blocks, X1 and X2. If X1 is invertible,
then

X = X2X
−1
1 ,

is the unique, stabilizing solution to the ARE. The ability to form X doesn’t depend on
the particular choice of X1 and X2.

Given a Hamiltonian, H , we say that H ∈ dom(Ric) if H has no ω axis eigenvalues and
the associated X1 matrix is invertible. Therefore, if H ∈ dom(Ric), we can obtain a
unique stabilizing solution, X . This mapping, from H to X , is often written as the
function, X = Ric(H).

To give an idea of the application of the ARE consider the following lemma (taken from
DGKF).

Lemma 1 Suppose H ∈ dom(Ric) and X = Ric(H). Then:

a) X is symmetric;

b) X satisfies the ARE,

AT X + XA + XRX − Q = 0;

c) A + RX is stable.

This is of course the well know result relating AREs to the solution of stabilizing state
feedback controllers.

AREs can also be used in calculating the H∞-norm of a state-space system. The
approach outlined here is actually that used in the software for the calculation of
‖P (s)‖∞. Consider a stable system,

P (s) =
[

A B
C 0

]
.

2.3. H∞ AND H2 DESIGN METHODOLOGIES 35

Choose γ > 0 and form the following Hamiltonian matrix,

H =
[

A γ−2BBT

−CT C −AT

]
.

The following lemma gives a means of checking whether or not ‖P (s)‖∞ < γ. A proof of
this lemma is given in DGKF although it is based on the work of Anderson [60],
Willems [61] and Boyd et al. [62].

Lemma 2 The following conditions are equivalent:

a) ‖P (s)‖∞ < γ;

b) H has no eigenvalues on the ω axis;

c) H ∈ dom(Ric);

d) H ∈ dom(Ric) and Ric(H) ≥ 0 (if (C,A) is observable then Ric(H) > 0).

As the above illustrates, AREs play a role in both stabilization and H∞-norm
calculations for state-space systems. Before giving more detail on the H∞ design
problem (Section 2.3.4), we will discuss some of the issues that arise in the practical
calculation of ARE solutions.

We can summarize an ARE solution method as follows:

(i) Form the Hamiltonian, H .

(ii) Check that H has no ω axis eigenvalues.

(iii) Find a basis for the stable subspace of H .

(iv) Check that X1 is invertible.

(v) Form X = X2X
−1
1 .

The first issue to note is that it is difficult to numerically determine whether or not H
has ω axis eigenvalues. A numerical calculation of the eigenvalues is unlikely to give

36 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

any with a zero real part. In practice we must use a tolerance to determine what is
considered as a zero real part.

Finding a basis for the stable subspace of H involves either an eigenvalue or Schur
decomposition. Numerical errors will be introduced at this stage. In most cases using an
eigenvalue decomposition is faster and less accurate than using a Schur decomposition.
Similarly, forming X = X2X

−1
1 will also introduce numerical errors. The Schur solution

approach, developed by Laub et al. [63, 64, 65], is currently the best numerical approach
to solving the ARE and is used in the software as the default method. An overview of
invariant subspace methods for ARE solution is given by Laub [66]. Accurate solution of
the ARE is still very much an active area of research.

2.3.4 Solving the H∞ Design Problem for a Special Case

We will now look at the H∞ design problem for a simplifying set of assumptions. The
general problem (with assumptions given in Section 2.3.2) can be transformed into the
simplified one given here via scalings and other transformations. The simplified problem
illustrates the nature of the solution procedure and is actually the problem studied in
DGKF. The formulae for the general problem are given in Glover and Doyle [59]. The
software solves the general problem.

Consider the following assumptions, with reference to the system in Equation 2.11:

(i) (A,B1) stabilizable and (C1,A) detectable;

(ii) (A,B2) stabilizable and (C2,A) detectable;

(iii) DT
12[C1 D12] = [0 I];

(iv)
[

B1

D21D
T
21

]
=
[0

I

]
;

(v) D11 = D22 = 0.

Assumption (i) is included in DGKF for technical reasons. The formulae are still correct
if it is violated. Note that, with these assumptions,

e = C1x + D12u,

2.3. H∞ AND H2 DESIGN METHODOLOGIES 37

and the components, C1x and D12u are orthogonal. D12 is also assumed to be
normalized. This essentially means that there is no cross-weighting between the state
and input penalties. Assumption (iv) is the dual of this; the input and unknown input
(disturbance and noise) affect the measurement, y, orthogonally, with the weight on the
unknown input being unity.

To solve the H∞ design problem we define two Hamiltonian matrices,

H∞ =
[

A γ−2B1B
T
1 − B2B

T
2

−CT
1 C1 −AT

]
,

and

J∞ =
[

AT γ−2CT
1 C1 − CT

2 C2

−B1B
T
1 −A

]
.

The following theorem gives the solution to the problem.

Theorem 3 There exists a stabilizing controller satisfying ‖G(s)‖∞ < γ if and only if
the following three conditions are satisfied:

a) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0.

b) J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0.

c) ρ(X∞Y∞) < γ2.

When these conditions are satisfied, one such controller is,

K∞(s) =
[

Â∞ −Z∞L∞
F∞ 0

]
,

where,

F∞ = −BT
2 X∞

38 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

L∞ = −Y∞CT
2

Z∞ = (I − γ−2Y∞X∞)−1

Â∞ = A + γ−2B1B
T
1 X∞ + B2F∞ + Z∞L∞C2.

Actually, the above formulation can be used to parametrize all stabilizing controllers
which satisfy, ‖G(s)‖∞ < γ. This can be expressed as an LFT. All such controllers are
given by,

K∞ = Fl(M∞, Q),

where,

M∞ =

 Â∞ −Z∞L∞ Z∞B2

F∞
−C2

0 I
I 0

,

and Q satisfies: Q ∈ RH∞, ‖Q‖∞ < γ. Note that if Q = 0 we get back the controller
given in Theorem 3. This controller is referred to as the central controller and it is the
controller calculated by the software.

Note also that the controller given above satisfies ‖G‖∞ < γ. It is not necessarily the
controller that minimizes ‖G‖∞ and is therefore referred to as a suboptimal H∞
controller. In practice this is not a problem, and may even be an advantage. The optimal
H∞ controller has properties which may not be desirable from an implementation point
of view. One typical property is that the high frequency gain is often large. Suboptimal
central controllers seem to be less likely to exhibit this characteristic.

2.3.5 Further Notes on the H∞ Design Algorithm

Now that we have covered the problem solution we can look at the areas that might give
potential numerical problems. The above results give a means of calculating a controller
(if one exists) for a specified γ value. As we mentioned earlier, the smallest such γ is
referred to as γopt. An iterative algorithm is used to find γ close to γopt and calculate
the resulting controller. The algorithm can be stated conceptually as follows:

2.3. H∞ AND H2 DESIGN METHODOLOGIES 39

a) Choose γ ≥ γopt

b) Form H∞ and J∞

c) Check that H∞ ∈ dom(Ric) and J∞ ∈ dom(Ric).

d) Calculate X∞ = Ric(H∞) and Y∞ = Ric(J∞)

e) Check that X∞ ≥ 0 and Y∞ ≥ 0

f) Check that ρ(X∞Y∞) < γ2

g) Reduce γ and go to step b).

The value of γ can be reduced until one of the checks at steps c), e) or f) fails. In this
case, γ < γopt and we use the X∞ and Y∞ of the lowest successful γ calculation to
generate the controller. In the Xµ software a bisection search over γ is used to find a γ
close to γopt. If step a) is not satisfied, the routine exits immediately and tells the user
to select a higher initial choice for γ.

As part of the check that H∞ ∈ dom(Ric), (and J∞ ∈ dom(Ric)) the real part of the
eigenvalues is calculated. The software uses a tolerance to determine whether or not to
consider these zero. The default tolerance works well in most cases; the user can adjust
it if necessary.

In practice determining that X∞ (and Y∞) is positive definite involves checking that,

min
i

Re{λi(X∞)} ≥ −ε.

Again, ε is a preset tolerance which can be adjusted by the user if necessary.

The third check is that,

ρ(γ−2X∞Y∞) < 1.

Fortunately this is a relatively well conditioned test.

The software displays the critical variables relating to each of these tests. The minimum
real part of the eigenvalues of H∞ (and J∞) is displayed. Similarly the minimum

40 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

eigenvalue of X∞ (and Y∞) is displayed. The ultimate test of the software is to form the
closed loop system and check both its stability and norm. We strongly suggest that the
user always perform this step.

The numerical issues discussed above are very unlikely to arise in low order systems.
Experience has shown that systems with very lightly damped modes are more
susceptible to numerical problems than those with more heavily damped modes.
However, it has been found to be possible, with the software provided, to design
controllers using 60th order interconnection structures with very lightly damped modes.

2.3.6 H2 Design Overview

Recall from Section 2.1.2 that the H2 norm of a frequency domain transfer function,
G(s), is

‖G(s)‖2 =
(

1
2π

∫ ∞

−∞
Trace [G(ω)∗G(ω)] dω

)1/2

.

Several characterizations of this norm are possible in terms of input/output signals. For
example, if the unknown signals are of bounded energy, ‖G‖2 gives the worst case
magnitude of the outputs e. Alternatively, if impulses are applied to the inputs of G(s),
‖G(s)‖2 gives the energy of the outputs e. H2 synthesis involves finding the controller
which minimizes the H2 norm of the closed loop system. This is the same the well
studied Linear Quadratic Gaussian problem.

2.3.7 Details of the H2 Design Procedure

The H2 design procedure is best explained by contrasting it with the H∞ procedure
explained in the previous sections. There are several differences, the most obvious being
that the H2 design problem always has a unique, minimizing, solution. The other
difference is that (in addition to the four conditions given in Section 2.3.2) D11 is
required to be zero, even in the general case. If this condition is violated no controller
will give a finite H2 norm for the closed loop system as it will not roll off as the
frequency goes to ∞.

We present the H2 solution in an LFT framework rather than the more well known LQG

2.3. H∞ AND H2 DESIGN METHODOLOGIES 41

framework. We again assume the simplifying assumptions used in Section 2.3.4 The H2

design solution is obtained (at least conceptually) from the H∞ design procedure by
setting γ = ∞ and using the resulting central controller. It is interesting to compare the
H∞ solution, given above, and the H2 solution given below.

Define two Hamiltonians, H2 and J2, by,

H2 =
[

A −B2B
T
2

−CT
1 C1 −AT

]
,

and

J2 =
[

AT −CT
2 C2

−B1B
T
1 −A

]
.

The sign definiteness of the off-diagonal blocks guarantees that H2 ∈ dom(Ric),
J2 ∈ dom(Ric) and X2 = Ric(H2) ≥ 0 and Y2 = Ric(J2) ≥ 0. The following theorem
gives the required result.

Theorem 4 The unique H2 optimal controller is given by,

K2(s) =
[

Â2 −L2

F2 0

]
,

where,

F2 = −BT
2 X2

L2 = −Y2C
T
2

Â2 = A + B2F2 + L2C2.

We commented above that the controller, K2, is (conceptually) obtained by choosing
γ = ∞ in the H∞ design procedure. This does not mean that ‖G‖∞ = ∞; it simply
means that we can make no a priori prediction about ‖G‖∞ for this controller. K2

minimizes ‖G‖2 and yields a finite ‖G‖∞. As such, it is often useful for determining an

42 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

P (s)

K(s)

� �

-

�

G(s)

e w

Figure 2.8: Closed loop system, G(s), for performance analysis

initial choice of γ for the H∞ design procedure. We will see later (Section 2.5) that it
can also be used to initialize the D-K iteration procedure when an open-loop H∞ design
is poorly conditioned.

2.4 µ Analysis

2.4.1 Measures of Performance

Section 2.3 presented design performance objectives in terms of the norm (H2 or H∞) of
a closed loop system. We will now expand on this idea of performance. Consider the
closed loop system illustrated in Figure 2.8. The interconnection structure, P (s), is
specified such that w represents unknown inputs; typically reference commands,
disturbances and noise. The outputs, e, represent signals that we would like to be small.
“Small” means in the sense of a selected norm. These signals might include actuator
effort, and tracking error. As Figure 2.8 suggests, this analysis is typically applied after
calculating a controller.

The inputs w are described only as members of a set. The performance question is then:
For all w in this set, are all possible outputs e also in some set? The following set

2.4. µ ANALYSIS 43

descriptions are considered, where B again denotes the unit ball.

Power : BP =

{
w

∣∣∣∣ lim
T→∞

1
2T

∫ T

−T

| w(t) |2 dt ≤ 1

}
(2.12)

Energy : BL2 =

{
w

∣∣∣∣ ‖w‖2
2 =

∫ ∞

−∞
| w(t) |2 dt ≤ 1

}
(2.13)

Magnitude : BL∞ =

{
w

∣∣∣∣ ‖w‖∞ = ess sup
t

|w(t)| ≤ 1

}
(2.14)

These norms are defined for scalar signals for clarity. The choice of w and e as the above
sets defines the performance criterion. The performance can be considered as a test on
the corresponding induced norm of the system. More formally,

Lemma 5 (Nominal Performance)

For all w in the input set, e is in the output set

if and only if ‖G(s)‖ ≤ 1.

Only certain combinations of input and output sets lead to meaningful induced norms.
The H∞/µ approach is based on the cases w, e ∈ BP and w, e ∈ BL2. As we noted in
Section 2.1.2, both of these cases lead to the following induced norm.

‖G(s)‖∞ = sup
ω

σmax [G(ω)] .

The choice of other input and output sets can lead to meaningful norms with
engineering significance. For example w, e ∈ BL∞ is arguably a more suitable choice for
some problems and leads to ‖G‖1 as a performance measure where

‖G‖1 =
∫ ∞

0

|g(τ)| dτ.

and g(τ) is the convolution kernel (impulse response) of G(s). For a discussion on the
other possible selections of input and output sets, and the mathematical advantages of

44 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

G21

G11

G22

G12

�1

�m

.
.
.

-

�

� �e w

z v

Figure 2.9: Perturbed closed loop system for stability analysis

the induced norms, the reader is referred to Doyle [2]. The major advantage of choosing
BP or BL2 is that the test for the performance can be considered in terms of the same
norm as stability. This has significant advantages when we are considering performance
and stability in the presence of perturbations, ∆.

2.4.2 Robust Stability and µ

Now we will consider the stability of a closed loop system under perturbations. In
Figure 2.9, G(s), is a perturbation model of a closed loop system. In the following
robust stability and robust performance analyses we will assume that ∆ is linear and
time-invariant.

We will also assume that the interconnection structure G(s) consists of stable transfer
function matrices, where stability is taken to mean that the system has no poles in the
closed right half plane. In practice this amounts to assuming that G22(s) (the nominal
closed loop system model) is stable as the other elements, G11(s), G12(s), and G21(s),
are weighting functions and can be chosen to be stable. The nominal closed loop system,
G22(s), often arises from a standard design procedure (H2, H∞, or loopshaping for
example) and will be stable.

2.4. µ ANALYSIS 45

Consider the case where the model has only one full ∆ block (m = 1 and q = 0 in
Equation 2.9). This is often referred to as unstructured, and the well known result (refer
to Zames [67] and Doyle and Stein [5]) is given in the following lemma.

Lemma 6 (Robust Stability, Unstructured)

Fu(G(s), ∆) is stable for all ∆, ‖∆‖∞ ≤ 1,

if and only if ‖G11(s)‖∞ < 1.

A generalization of the above is required in order to handle Fu(G(s), ∆) models with
more than one full ∆ block. The positive real valued function µ can be defined on a
complex valued matrix M , by

det(I − M∆) 6= 0 for all ∆ ∈ B∆, if and only if µ(M) < 1.

Note that µ scales linearly. In other words, for all α ∈ R,

µ(αM) = |α|µ(M).

In practice the test is normalized to one with the scaling being absorbed into the
interconnection structure. An alternative definition of µ is the following.

µ(M) =


0 if no ∆ ∈ ∆ solves det(I + M∆) = 0
otherwise[
min
∆∈∆

{
β
∣∣∣ ∃∆, ‖∆‖ ≤ β, such that det(I + M∆) = 0

}]−1

Note that µ is defined as the inverse of the size of the smallest destabilizing
perturbation. This immediately gives the following lemma.

Lemma 7 (Robust Stability, Structured)

46 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Fu(G(s), ∆) stable for all ∆ ∈ B∆

if and only if ‖µ(G11(s))‖∞ < 1.

where

‖µ(G11(s))‖∞ = sup
ω

µ[G11(ω)].

The use of this notation masks the fact that µ is also a function of the perturbation
structure, ∆. The above definition of µ applies to the more general block structure given
in Section 2.2.4. We can even consider the some of the blocks to be real valued, rather
than complex valued. The robust stability lemma is still valid; however the calculation
of µ becomes significantly more difficult.

In applying the matrix definition of µ to a real-rational G11(s), it has been assumed that
∆ is a complex constant at each frequency. This arises from the assumption that ∆ is
linear and time-invariant. Under this assumption we can examine the combination of
system and perturbation independently at each frequency. The analysis then involves
looking for the worst case frequency. If ∆ is not time-invariant then the frequency by
frequency analysis does not apply; ∆ can be used to shift energy between frequencies
and cause instability not predicted by the above analysis.

In practice this µ test is applied by selecting a frequency grid and at each frequency
calculating µ(G11(ω)). The choice of range and resolution for this grid is a matter of
engineering judgement. If very lightly damped modes are present a fine grid may be
required in the region of those modes.

2.4.3 Robust Performance

The obvious extension to the above is to consider performance in the presence of
perturbations ∆. For e, w ∈ BP or BL2 robust performance is a simple extension of
robust stability.

Lemma 8 (Robust Performance)

Fu(G(s), ∆) is stable and ‖Fu(G(s), ∆)‖∞ ≤ 1 for all ∆ ∈ B∆

2.4. µ ANALYSIS 47

if and only if ‖µ(G(s))‖∞ < 1,

where µ is taken with respect to an augmented structure ∆̂,

∆̂ =
{
diag(∆, ∆̂)

∣∣∣ ∆ ∈ ∆, ∆̂ = Cdim(w)×dim(e)
}

.

The additional perturbation block, ∆̂ can be thought of as a “performance block”
appended to the ∆ blocks used to model system uncertainty. This result is the major
benefit of the choice of input and output signal norms; the norm test for performance is
the same as that for stability. Robust performance is simply another µ test with one
additional full block.

The frequency domain robustness approach, outlined above, assumes that the
perturbations, ∆, are linear and time-invariant. This assumption is the most commonly
applied. Section 2.4.6 will consider a robustness analysis from a state-space point of
view. This form of analysis applies to norm bounded non-linear or time varying
perturbations. We will first look more closely at the properties of µ, particularly as they
relate to its calculation.

2.4.4 Properties of µ

The results presented here are due to Doyle [68]. Fan and Tits [69, 70] have done
extensive work on algorithms for tightening the bounds on the calculation of µ.
Packard [3] has also worked on improvement of the bounds and the extension of these
results to the repeated block cases. The most comprehensive article on the complex
singular value is that by Packard and Doyle [20]. More detail is contained in the
technical report by Doyle et al. [71].

We will look at simple bounds on µ. The upper bound results are particularly important
as they will form the basis of the design procedure provided in this software (D-K
iteration).

Defining a block structure made up of one repeated scalar, (∆ = {λI | λ ∈ C}) makes
the definition of µ the same as that of the spectral radius.

∆ =
{
λI
∣∣∣ λ ∈ C

}
⇒ µ(M) = ρ(M).

48 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

For the other extreme consider a single full block (∆ = {∆ | ∆ ∈ Cn×n}); the definition
of µ is now the same as that for the maximum singular value,

∆ = {∆ | ∆ ∈ Cn×n} ⇒ µ(M) = σmax(M).

Observe that every possible block structure, ∆, contains {λI | λ ∈ C} as a perturbation;
and every possible block structure, ∆, is contained in Cn×n. These particular block
structures are the boundary cases. This means that the resulting µ tests act as bounds
on µ for any block structure, ∆. This gives the following bounds.

ρ(M) ≤ µ(M) ≤ σmax(M).

The above bounds can be arbitrarily conservative but can be improved by using the
following transformations. Define the set

D =
{
diag(D1, . . . , Dq, d1I1, . . . , dmIm,)

∣∣∣ Dj = D∗
j > 0,

dim(Ii) = ki, di ∈ R, di > 0
}

.(2.15)

This is actually the set of invertible matrices that commute with all ∆ ∈ ∆. This allows
us to say that for all D ∈ D and for all ∆ ∈ ∆,

D−1∆D = ∆.

Packard [3] shows that the restriction that di be positive real is without loss of
generality. We can actually take one of these blocks to be one (or the identity).

Now define Q as the set of unitary matrices contained in ∆:

Q =
{
Q ∈ ∆

∣∣∣ Q∗Q = I
}

. (2.16)

The sets D and Q can be used to tighten the bounds on µ in the following way (refer to
Doyle [68]).

max
Q∈Q

ρ(QM) ≤ µ(M) ≤ inf
D∈D

σmax(DMD−1). (2.17)

2.4. µ ANALYSIS 49

Actually, the lower bound is always equal to µ but the implied optimization has local
maxima which are not global. For the upper bound Safonov and Doyle [72], have shown
that finding the infimum is a convex problem and hence more easily solved. However the
bound is equal to µ only in certain special cases. Here we use the infimum rather that
the miminum because D may have a element which goes to zero as the maximum
singular value decreases. So the limiting case (where an element of D is zero) is not a
member of the set D.

The cases where the upper bound is equal to µ are tabulated below.

q = 0 q = 1 q = 2

m = 0 equal less than or equal
m = 1 equal equal less than or equal
m = 2 equal less than or equal less than or equal
m = 3 equal less than or equal less than or equal
m = 4 less than or equal less than or equal less than or equal

Most practical applications of the µ theory involve models where q = 0. Here we see that
we have equality with the upper bound for three or fewer blocks. Computational
experience has yet to produce an example where the bound differs by more than
15 percent. In practically motivated problems the gap is usually much less.

2.4.5 The Main Loop Theorem

We will introduce a fundamental theorem in µ analysis: the main loop theorem. From
the previous discussion you will see that there are several matrix properties that can be
expressed as µ tests. The spectral radius and the maximum singular value are two such
quantities. The main loop theorem gives a way of testing such properties for perturbed
systems. The test is simply a larger µ problem. This is the theorem underlying the
extension from robust stability to robust performance.

Consider a partitioned matrix,

M =
[

M11 M12

M21 M22

]
,

50 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

and two block structures, ∆1 (compatible with M11) and ∆2 (compatible with M22).
There are two perturbed subsystems that we can study here: Fu(M, ∆1), where ∆1 is
closed in a feedback loop around M11; and Fl(M, ∆2), where ∆2 is closed in a feedback
loop around M22.

We have already seen that in the case of a dynamic system, the robust stability of
Fu(M, ∆1) is analyzed by checking that µ1(M11) < 1. Here we have used µ1 to indicate
that we are considering it with respect to the block structure ∆1. In the constant
matrix case, we say that the LFT, Fu(M, ∆1) is well posed for all ∆1 ∈ B∆1 if and only
if µ1(M11) < 1. This simply means that the inverse in the LFT equations is well defined
for all ∆1 ∈ B∆1.

The well posedness discussion above applies equally well to Fl(M, ∆2) and we will
denote the µ test for M22 by µ2(M22). However, instead of looking at µ2 of M22, we
want to look at µ2(Fu(M, ∆1)). Note that Fu(M, ∆1) has the same dimensions as M22

and in fact Fu(M, ∆1) = M22 when ∆1 = 0. In otherwords, what happens when we
apply the µ2 test to the whole set of matrices generated by Fu(M, ∆1).

To answer this question we need to introduce a larger block structure, denoted here
simply by ∆. This is simply the diagonal combination of the previous two structures:

∆ = diag(∆1,∆2).

Note that this has compatible dimensions with M itself and the associated µ test will be
denoted by µ(M). Now we can answer the question about what happens to
µ2(Fu(M, ∆1)) for all ∆1 ∈ B∆1.

Theorem 9 (Main Loop Theorem)

µ(M) < 1 if and only if


µ1(M11) < 1
and

max
∆1∈B∆1

µ2[Fu(M, ∆1)] < 1

This theorem underlies the fact that robust performance is a simple extension of robust
stability. It has a much more significant role in developing connections between the µ
theory and other theoretical aspects of control. The example in the following section is
an illustration of this point.

2.4. µ ANALYSIS 51

2.4.6 State-space Robustness Analysis Tests

We will look at some more advanced state-space approaches to the analysis of robust
performance. Most users of the software will concentrate on the more common frequency
domain analysis methods covered in Section 2.4.3. The analysis tests given here can be
implemented with the Xµ functions and the more advanced user can use these to study
the robustness of systems with respect to time-varying and nonlinear perturbations.

To illustrate this approach, consider the state-space LFT model of a system introduced
in Section 2.2.4. A digital system is described by,

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

This digital system has transfer function,

P (z) = Fu(Pss, z
−1I),

where Pss is the real valued matrix,

Pss =
[

A B
C D

]
,

and the scalar × identity, z−1I, has dimension nx, equal to the state dimension of P (z).
This is now in the form of an LFT model with a single scalar × identity element in the
upper loop.

Define,

∆1 =
{

δInx

∣∣ δ ∈ C } ,

and note that with this definition,

µ1(A) = ρ(A).

52 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Therefore µ1(A) < 1 is equivalent to our system being stable. Furthermore, the
maximum modulus theorem for a stable system tells us that,

‖P (z)‖∞ = sup
|z|≥1

σmax(P (z))

= sup
|z−1|≤1

σmax(Fu(Pss, z
−1I)

= sup
∆1∈B∆1

µ2(Fu(Pss, ∆1),

if ∆2 is defined as a single full block of dimensions matching the input-output
dimensions of P (z). The main loop theorem (Theorem 9) immediately suggests the
following result.

Lemma 10

µ(Pss) < 1 if and only if


P(z) is stable
and
‖P (z)‖∞ < 1.

Note that this tests whether or not the ∞ norm is less than one. It doesn’t actually
calculate the ∞ norm. To do this we have to set up a scaled system and search over the
scaling with makes µ(Pss) = 1.

To apply this to a robust performance problem, consider the configuration shown in
Figure 2.10. This is a state-space representation of a perturbed system. It would
typically model an uncertain closed-loop system where the performance objective is
‖e‖ ≤ ‖w‖, for all w ∈ BL2 and all ∆ ∈ B∆.

The real-valued matrix, Gss, is,

Gss =

 A B1 B2

C1 D11 D12

C2 D21 D22

 .

2.4. µ ANALYSIS 53

Gss

z�1I
-

�

� �e w

x(k+1) x(k)

�

�

-

z v

Figure 2.10: Perturbed system for state-space robustness tests

54 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Note that the nominal system is given by,

Gnom(z) = Fu

([
A B1

C1 D11

]
, z−1I

)
,

and the perturbed system is,

G(z) = Fu(Fl(G, ∆), z−1I).

We assume that ∆ is an element of a unity norm bounded block structure, ∆ ∈ B∆.

For the µ analysis we will define a block structure corresponding to Gss,

∆s =
{

diag(δ1Inx, ∆2, ∆)
∣∣∣∣ δ1 ∈ C, ∆2 ∈ Cdim(w)×dim(e), ∆ ∈ ∆

}
.

Consider also a block structure corresponding to Fu(Gss, z
−1I),

∆p =
{

diag(∆2, ∆)
∣∣∣∣ ∆2 ∈ Cdim(w)×dim(e), ∆ ∈ ∆

}
.

This is identical to the ∆s structure except that the δ1Inx block, corresponding to the
state equation, is not present. The following theorem gives the equivalence between the
standard frequency domain µ test and a state-space µ test for robust performance (first
introduced by Doyle and Packard [23]. The notation µ∆s will denote a µ test with
respect to the structure ∆s, and µ∆p is a µ test with respect to the ∆p structure.

Theorem 11

The following conditions are equivalent.

i) µ∆s(Gss) < 1 (state-space µ test);

ii) ρ(A) < 1 and max
ω∈[0,2π]

µ∆p(Fu(Gss, eωI)) < 1 (frequency domain µ test);

2.4. µ ANALYSIS 55

iii) There exists a constant β ∈ [0, 1] such that for each fixed ∆ ∈ B∆, G(z) is stable
and for zero initial state response, e satisfies ‖e‖2 ≤ β ‖w‖2 (robust
performance).

The frequency domain µ test is implemented by searching for the maximum value of µ
over a user specified frequency grid. Theorem 11 shows that this is equivalent to a
single, larger, µ test. There are subtle distinctions between the two tests. As we would
expect, calculation of the larger µ test is more difficult. More importantly, the result
does not scale. In the frequency domain test, if

max
ω∈[0,2π]

µ∆p [Fu(Gss, eωInx)] = β,

where β > 1, then we are robust with respect to perturbations up to size 1/β. In the
state-space test, if µ∆s(Gss) = β, where β > 1, then we cannot draw any conclusions
about the robust performance characteristics of the system. We must scale the inputs or
outputs and repeat the calculation until the µ test gives a result less than one.

In practice we can only calculate upper and lower bounds for both of these µ tests.
Although the state-space and frequency domain µ tests are equivalent, their upper
bound tests have different meanings. We will see that this difference can be used to
study the difference between linear time-invariant perturbations and linear time-varying
(and some classes of non-linear) perturbations.

To clarify this issue, consider the D scales which correspond to ∆s and ∆p;

Ds =
{

diag(D1, d2I2, D)
∣∣∣∣DT

1 = D1 > 0, dim(D1) = nx × nx,

d2 > 0, dim(I2) = dim(w) × dim(w), D ∈ D
}

,

Dp =
{

diag(d2I2, D)
∣∣∣∣ d2 > 0, dim(I2) = dim(w) × dim(w), D ∈ D

}
.

In the above D is the set of D-scales for the perturbation structure ∆, and, for
notational simplicity, we have assumed that dim(w) = dim(e). Now, the upper bound
tests are:

56 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

i) State-space upper bound:

inf
Ds∈Ds

σmax[DsGssD
−1
s] < 1;

ii) Frequency domain, constant D, upper bound:

inf
Dp∈Dp

max
ω∈[0,2π]

σmax[DpFu(Gss, eωInx)D−1
p] < 1;

iii) Frequency domain upper bound:

max
ω∈[0,2π]

inf
Dp∈Dp

σmax[DpFu(Gss, eωInx)D−1
p] < 1.

In both the state-space and frequency domain, constant D, upper bound, a single D
scale is selected to guarantee robust performance over all frequencies. These two tests
(items i) and ii) above) are equivalent. In the frequency domain upper bound test
(item iii)) a different D-scale is selected at each frequency.

The relationship between all of these tests is summarized by the following:

inf
Ds∈Ds

σmax[DsGssD
−1
s] < 1 State-space upper bound

m
inf

Dp∈Dp

max
ω∈[0,2π]

σmax[DpFu(Gss, eωInx)D−1
p] < 1 Frequency domain, constant D,

upper bound

⇓
max

ω∈[0,2π]
inf

Dp∈Dp

σmax[DpFu(Gss, eωInx)D−1
p] < 1 Frequency domain upper bound

⇓
max

ω∈[0,2π]
µ∆p [Fu(Gss, eωInx)] < 1 Frequency domain µ test

m
µ∆s [Gss] < 1 State-space µ test

In the two cases where there are one way implications, there are real gaps. We have
already seen that there is a gap between the frequency domain µ test and its upper
bound for four or more full blocks. This is a computational issue.

2.4. µ ANALYSIS 57

The gap between the state-space (or constant D) upper bound and the frequency
domain upper bound is more significant. In the state-space upper bound, a single D
scale is selected. This gives robust performance for all ∆ satisfying, ‖v‖ ≤ ‖z‖ for all
e ∈ L2. This can be satisfied for linear time-varying perturbations or non-linear cone
bounded perturbations. The formal result is given in the following theorem (given in
Packard and Doyle [20]).

Theorem 12

If there exists Ds ∈ Ds such that

σmax[DsGssD
−1
s] = β < 1,

then there exists constants, c1 ≥ c2 > 0 such that for all perturbation sequences,
{∆(k)}∞k=0 with ∆(k) ∈ ∆, σmax[∆(k)] < 1/β, the time varying uncertain system,

[
x(k + 1)

e(k)

]
= Fl(Gss, ∆(k))

[
x(k)
w(k)

]
,

is zero-input, exponentially stable, and furthermore if {w(k)}∞k=0 ∈ l2, then

c2(1 − β2) ‖x‖2
2 + ‖e‖2

2 ≤ β2 ‖w‖2
2 + c1‖x(0)‖2.

In particular,

‖e‖2
2 ≤ β2 ‖w‖2

2 + c1‖x(0)‖2.

The user now has a choice of robust performance tests to apply. The most appropriate
depends on the assumed nature of the perturbations. If the state-space upper bound test
is used, the class of allowable perturbations is now very much larger and includes
perturbations with arbitrarily fast time variation. If the actual uncertainty were best
modeled by a linear time-invariant perturbation then the state-space µ test could be
conservative. The frequency domain upper bound is probably the most commonly used
test. Even though the uncertainties in a true physical system will not be linear, this
assumption gives suitable analysis results in a wide range of practical examples.

58 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

2.4.7 Analysis with both Real and Complex Perturbations

The above results only apply to the case where ∆ is considered as a constant complex
valued matrix at each frequency. In many engineering applications restricting certain of
the ∆ blocks to be real valued may result in a less conservative model. Analysis with
such restrictions is referred to as the “mixed” µ problem.

For example, consider the LFT form of the engine combustion model developed in
Section 2.2.4 (Equation 2.10). The block structure contains both real and complex
perturbations. A closed-loop model will also include these perturbations and the robust
stability and robust performance analyses will involve calculation of µ with respect to
both real and complex valued perturbations. We could simply assume that all
perturbations were complex; this would certainly cover the situation. However, such an
assumption may be too conservative to be useful. Calculation of mixed µ will give a
more accurate result in this case.

Efficient computation of µ in the mixed case is discussed by Doyle, Fan, Young, Dahleh
and others [73, 74, 75, 76]. Accurate mixed µ analysis software will be available in the
near future. Unlike the complex µ case, this will not directly lead to a compatible
synthesis procedure. Significantly more work is required in this direction.

2.5 µ Synthesis and D-K Iteration

2.5.1 µ-Synthesis

We now look at the problem of designing a controller to achieve a performance
specification for all plants, P (s), in a set of plants, P . The previous sections have dealt
with the questions of performance and robust stability in depth and the same framework
is considered for the synthesis problem. Figure 2.11 illustrates the generic synthesis
interconnection structure.

The lower half of this figure is the same as that for the H∞ and H2 design procedure.
The controller measurements are y, and the controller actuation inputs to the system are
u. The configuration differs from the standard H∞ or H2 case in that Fu(P (s), ∆)
(rather than the nominal plant, P22(s)) is used as the design interconnection structure.

The problem is to find K(s) such that for all ∆ ∈ B∆, K(s) stabilizes Fu(P (s), ∆) and

2.5. µ SYNTHESIS AND D-K ITERATION 59

P (s)

�-

�

� �e w

z v

K(s)

�

-

y u

Figure 2.11: The generic interconnection structure for synthesis

‖Fu(Fl(P (s), K(s)), ∆)‖∞ ≤ 1. This is equivalent to K(s) satisfying
µ[Fl(P (s), K(s))] < 1. In other words, the closed loop system satisfies the robust
performance specification.

Unfortunately this problem has not yet been solved, except is a few special cases. The
current approach to this problem, known as D-K iteration, involves the iterative
application of the H∞ design technique and the upper bound µ calculation. We will give
a brief conceptual overview here and give more algorithmic details in Section 2.5.2.

Consider applying H∞ synthesis to the full P (s) interconnection structure for this
problem. Suppose that this gives a controller, K(s) such that K(s) stabilizes P (s) and

‖Fl(P (s), K(s))‖∞ ≤ 1.

60 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Recall that this is an upper bound for the µ problem of interest, implying that,

µ[Fl(P (s), K(s)] ≤ 1,

as required. However the upper bound may be conservative, meaning that in order to
guarantee that µ[Fl(P (s), K(s)] ≤ 1, we have had to back off on the performance and/or
the stability margins.

With the appropriate choice of D scalings the upper bound will be much closer to µ. In
otherwords there exists D such that, ‖DFl(P (s), K(s))D‖∞ is a close upper bound to
µ[Fl(P (s), K(s)]. The µ-synthesis problem can be replaced with the following
approximation (based on the upper bound):

inf
D∈D

K(s) stabilizing

‖DFl(P (s), K(s))D−1‖∞. (2.18)

The reader is referred to Doyle [1] for details of this problem.

If this is considered as an optimization of two variables, D and K(s), the problem is
convex in each of the variables separately, but not jointly convex. Doyle [2] gives an
example where this method reaches a local nonglobal minimum.

D-K iteration involves iterating between using D ∈ D and K(s) to solve Equation 2.18.
There are several practical issues to be addressed in doing this and we discuss those in
the next section.

2.5.2 The D-K Iteration Algorithm

The objective is to design a controller which minimizes the upper bound to µ for the
closed loop system;

inf
D∈D

K(s) stabilizing

‖DFl(P (s), K(s))D−1‖∞.

The major problem in doing this is that the D-scale that results from the µ calculation
is in the form of frequency by frequency data and the D-scale required above must be a

2.5. µ SYNTHESIS AND D-K ITERATION 61

dynamic system. This requires fitting an approximation to the upper bound D-scale in
the iteration. We will now look at this issue more closely.

The D-K iteration procedure is illustrated schematically in Figure 2.12. It can be
summarized as follows:

i) Initialize procedure with K0(s): H∞ (or other) controller for P (s).

ii) Calculate resulting closed loop: Fl(P (s), K(s)).

iii) Calculate D scales for µ upper bound:

inf
D(ω)∈D

σmax[D(ω)Fl(P (s), K(s))D(ω)−1].

iv) Approximate frequency data, D(ω), by D̂(s) ∈ RH∞, with D̂(ω) ≈ D(ω).

v) Design H∞ controller for D̂(s)P (s)D̂−1(s).

vi) Go to step ii).

We have used the notation D(ω) to emphasize that the D scale arises from frequency by
frequency µ analyses of G(ω) = Fl(P (ω), K(ω)) and is therefore a function of ω. Note
that it is NOT the frequency response of some transfer function and therefore we do
NOT use the notation D(ω).

The µ analysis of the closed loop system is unaffected by the D-scales. However the H∞
design problem is strongly affected by scaling. The procedure aims at finding at D such
that the upper bound for the closed loop system is a close approximation to µ for the
closed loop system. There are several details about this procedure that will now be
clarified.

At each frequency, a scaling matrix, D(ω), can be found such that
σmax(D(ω)G(ω)D(ω)−1) is a close upper bound to µ(G(ω)) (Figure 2.12c). The D
scale is block diagonal and the block corresponding to the e and w signals can be chosen
to be the identity. The part of D corresponding to the z signal commutes with ∆ and
cancels out the part of D−1 corresponding to the v signal. To illustrate this, consider
the D scale that might result from a block structure with only m full blocks. At each

62 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

a)

K0

P (s)

�

�

�

�

-

�

z

e

v

w

y u

b)

G(s)

�

� �

-

�

e w

z v

c)

D(!) G(|!) D(!)�1

�

� � � �

�

-

��

e e w w

z v

d)

D̂(s)
P (s)

D̂�1(s)

K

�

�

�

�

�

�

�

�

-

�

e e

z

y

w

v

u

w

Figure 2.12: D-K iteration procedure: a) Design H∞ (or other) controller: K0(s) [step
i)]. b) Closed loop perturbed system for µ analysis [step ii)]. c) Frequency by frequency
upper bound D(ω) scale approximation to µ analysis [step iii)]. d) Scaling of H∞ design
problem by D̂(s) where D̂(ω) ≈ D(ω) [steps iv) & v)].

2.5. µ SYNTHESIS AND D-K ITERATION 63

frequency we would have,

D =


d1I1

. . .
dmIm

Ie

 ,

where the identity Ie is of dimensions dim(e) × dim(e).

The calculation of a new H∞ controller requires a state-space realization of D(ω). For
each di in D(ω) we must fit a transfer function approximation, which we will denote by
d̂i(s). This is denoted by D̂(s) in the above discussion. The observant reader will notice
that, as defined here, D̂(s) is not of the correct input dimension to multiply P (s). We
must append another identity of dimension equal to the dimension of the signal y. The
final result is,

D̂(s) =


d̂1(s)I1

. . .
d̂m(s)Im

Ie

Iy



and

D̂−1(s) =


d̂−1
1 (s)I1

. . .
d̂−1

m (s)Im

Iw

Iu

 .

Throughout the theoretical discussion we have assumed that the perturbation blocks,
∆i, were square. The software handles the non-square case. This makes a difference to
D̂(s) and D̂−1(s). The identity blocks (Im, etc.) shown above will be of different sizes
for D̂(s) and D̂−1(s) if the corresponding ∆i perturbation is non-square. Similarly, the
Iw and Iu identities in D̂−1(s) are not necessarily the same size as Ie and Iy in D̂(s).

64 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

Several aspects of this procedure are worth noting. For the µ analysis and D scale
calculation, a frequency grid must be chosen. The range and resolution of this grid is a
matter of engineering judgement. The µ analysis can require a fine grid in the vicinity of
the lightly damped modes. The order of the initial controller, K0(s), is the same as the
interconnection structure, G(s). The order of K(s) is equal to the sum of the orders of
G(s), D̂(s) and D̂−1(s). This leads to a trade-off between the accuracy of the fit
between D and D̂(s) and the order of the resulting controller, K(s).

Another aspect of this to consider is that as the iteration approaches the optimal µ
value, the resulting controllers often have more and more response at high frequencies.
This may not show up in the µ calculation, the D scale fitting, or a frequency response
of K(s), because the dynamics are occuring outside of the user specified frequency grid.
However these dynamics affect the next H∞ design step and may even lead to numerical
instability.

The above discussion used an H∞ controller to initialize the iteration. Actually any
stabilizing controller can be used. In high order, lightly damped, interconnection
structures, the H∞ design of K0(s) may be badly conditioned. In such a case the
software may fail to generate a controller, or may give controller which doesn’t stabilize
the system. A different controller (the H2 controller is often a good choice) can be used
to get a stable closed loop system, and thereby obtain D scales. Application of these D
scales (provided that they do not add significantly many extra states) often results in a
better conditioned H∞ design problem and the iteration can proceed.

The robust performance difference between the H∞ controller, K0(s), and K(s), can be
dramatic even after a single D-K iteration. The H∞ problem is sensitive to the relative
scalings between v and w (and z and e). The D scale provides the significantly better
choice of relative scalings for closed loop robust performance. Even the application of a
constant D scale can have dramatic benefits.

2.6 Model Reduction

High order interconnection structures will result in high order controllers. Often a
controller of significantly lower order will perform almost as well. Approximating a
state-space system by one of lower order is referred to as model reduction. There are
several techniques available for this purpose in Xµ and the background to these
techniques is discussed here.

2.6. MODEL REDUCTION 65

2.6.1 Truncation and Residualization

The simplest form of model reduction is state truncation. Consider a system, P (s), with
a partitioned state matrix,

P (s) =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 .

Truncating the states associated with A22 results in,

Ptrun(s) =
[

A11 B1

C1 D

]
.

In any practical application we would order the states so that those truncated do not
significantly affect the system response. For example, to truncate high frequency modes,
A is transformed to be diagonal (or with 2 × 2 blocks on the diagonal) and the
eigenvalues are ordered in increasing magnitude. This results in A21 = 0 and A22

corresponds to the high frequency modes.

Truncation also affects the zero frequency response of the system. Residualization
involves truncating the system and adding a matrix to the D matrix so that the zero
frequency gain is unchanged. This typically gives a closer approximation to the original
system at low frequency. If the original system rolls off with frequency, the low order
residualized approximation will usually not share this characteristic. Using the above
P (s), the result is,

Presid(s) =
[

A11 − A12A
−1
22 A21 B1 − A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]
.

2.6.2 Balanced Truncation

Consider a stable state-space system,

P (s) =
[

A B
C D

]
.

66 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

The controllability grammian, Y is defined as,

Y =
∫ ∞

0

eAtBBT eAT tdt,

and the observability grammian, X , is defined as

X =
∫ ∞

0

eAT tCT CeAtdt.

The grammians, X and Y , satisfy the Lyapunov equations,

AY + Y AT + BBT = 0
AT X + XA + CT C = 0,

and this is typically how they are calculated. We can also see from the definitions that
X ≥ 0 and Y ≥ 0. Actually Y > 0 if and only if (A,B) is controllable and X > 0 if and
only if (C, A) is observable.

Now consider the effect of a state transformation on these grammians. Define a new
state, x̂, by x̂ = Tx, where T is invertible, to give

P (s) =
[

Â B̂

Ĉ D

]
=

[
TAT−1 TB
CT−1 D

]
.

The new grammians are Ŷ = TY T T and X̂ = T−T XT−1. The product of the
grammians, Ŷ X̂ is therefore given by,

Ŷ X̂ = TY XT−1.

This illustrates that the eigenvalues of the product of the grammians is invariant under
state similarity transformation.

2.6. MODEL REDUCTION 67

We will now look at a particular choice of transformation. For a minimal realization, we
can always find a transformation that gives,

Ŷ = TY T T = Σ,

and

X̂ = T−T XT−1 = Σ,

where Σ = diag(σ1, . . . , σn) and σi ≥ 0, i = 1, . . . , n. This realization, where the
grammians are equal, is called a balanced realization. Each mode of the balanced system
can be thought of as equally controllable and observable. Balanced realization was first
introduced by Moore [77].

The σi are known as the Hankel singular values of the system and are ordered such that
σ1 is the largest and σn is the smallest. Because the eigenvalues of the product of the
grammians are invariant with respect to similarity transformations, the Hankel singular
values are system invariants. We will denote the Hankel norm of a system as ‖P (s)‖H

and this is given by,

‖P (s)‖H = σ1.

The input-output interpretation of the Hankel norm is the following,

‖P‖H = sup
u(t)∈L2(−∞,0)

∥∥∥y(t)
∣∣
(0,∞)

∥∥∥
2

‖u(t)‖2

.

The notation, y(t)
∣∣
(0,∞)

, denotes the system output, considered only over the time
interval zero to ∞. So we are looking at the system output, from time zero to ∞, in
response to input signals from −∞ to zero. The Hankel norm is the maximum gain from
past inputs to future outputs. Each signal, u(t) ∈ L2(−∞, 0) drives the system state to
a particular location in the state-space, and the output (considered over (0,∞)) is the
corresponding transient decay from that state.

Balanced truncation involves obtaining a balanced realization of P (s) and then
truncating the states corresponding to the smallest Hankel singular values. Enns [78]

68 CHAPTER 2. OVERVIEW OF THE UNDERLYING THEORY

and Glover [79] independently obtained the following bound on the error induced by
balanced truncation.

Theorem 13

Given a stable, rational, P (s), and Pbal(s), the balanced truncation of order k < n. Then,

‖P (s) − Pbal(s)‖∞ ≤ 2
n∑

i=k+1

σi

and

‖P (s) − Pbal(s)‖H ≤ 2
n∑

i=k+1

σi.

Unobservable or uncontrollable modes have a corresponding Hankel singular value of
zero and we can see immediately from the above that their truncation does not affect
the ∞-norm of the system.

2.6.3 Hankel Norm Approximation

We can also consider the problem of finding the kth order controller which gives the
closest fit (in terms of the Hankel norm) to the original system. The results given here
are due to Glover [79]. The first thing to consider is a lower bound on the error, which is
specified in the following lemma.

Lemma 14

Given a stable, rational P (s), and a kth order approximation, Pk(s). Then

σk+1 ≤ ‖P (s) − Pk(s)‖∞.

This tells us how well we can expect to do in terms of the ∞ norm. Actually, there
exists a Pk(s) which achieves this bound. The only problem is that it can have unstable
(or anti-causal) parts to it.

2.6. MODEL REDUCTION 69

Consider the problem of finding the stable, order k realization which minimizes the
Hankel norm of the error. Define, Phankel(s) as the minimizing system. Then we have,

σk+1 ≤ ‖P (s) − Phankel(s)‖H = inf
Pk(s) stable

‖P (s) − Pk(s)‖H .

This system also satisfies ∞-norm bounds on the error, as illustrated in the following
theorem.

Theorem 15

Given a stable, rational, P (s), and the optimal kth order Hankel norm approximation,
Phankel(s). Then

‖P (s) − Phankel(s)‖∞ ≤ 2
n∑

i=k+1

σi.

Furthermore, there exists a constant matrix, D0, such that

‖P (s) − (Phankel(s) + D0)‖∞ ≤
n∑

i=k+1

σi.

Careful examination of the previous section will indicate that the Hankel norm of a
system is independent of the D term. The optimal Hankel norm approximation given
above, Phankel(s), is considered to have a zero D term. It has the same error bounds as
the balanced truncation. Theorem 15 states that we can find a D matrix to add to
Phankel(s) to cut this bound in half.

The most common use of balanced truncations and Hankel norm approximations is to
reduce the order of a controller. Note that this will give a small ∞-norm error with
respect to the open-loop controller. It does not say anything about the preservation of
closed loop properties. These should always be checked after performing a controller
order reduction.

Chapter 3

Functional Description of Xµ

3.1 Introduction

This chapter describes the Xµ functions in the context of their intended usage.
Chapter 2 provides the reader with an idea of the theoretical basis behind the various
analysis and design calculations. Here we outline the software functions available for
doing those calculations.

Robust control design uses a subset of data objects provided within Xmath. We discuss
the details of the most heavily used objects: Dynamic Systems and pdms. This
coverage overlaps that given in the Xmath Basics manual; only the emphasis is different.
There are several subtleties which arise when using these data objects in a robust
control context. These issues are discussed in Section 3.2.

3.2 Data Objects

Xmath provides a wide range of data objects. There are several which are of primary
interest in control design: matrices, pdms and Dynamic System. The transfer function
object is useful for specifying systems although all calculations will be done with state
space Dynamic Systems. The control uses of these objects is reviewed in this section.

71

72 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

3.2.1 Dynamic Systems

Xmath has a dynamic system data object which specifies a dynamic system in terms of
A, B, C and D matrices. The dynamic equations of the system are,

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

in the continuous case, and

x(kT + T) = Ax(kT) + Bu(kT),
y(kT) = Cx(kT) + Du(kT),

in the discrete time case. The discrete time sample period, T , is stored as part of the
data object. The user can label the system inputs, u(t), outputs, y(t), and states, x(t).

Also residing within the Xmath state-space object is the initial state, x(0). This is used
primarily for time response calculations. It is debatable whether or not the initial state
is an intrinsic attribute of the system as one frequently changes it for simulation. It has
the advantage of reducing the time response calculation to a simple multiplication and it
can easily be changed without accessing all of the other system variables.

The Xmath core functions system and abcd are used to create state-space systems. The
system function is also used to specify the initial state (and, as discussed in the next
section, any other system attributes). The following example puts together a simple
two-state system.

Specify the A, B, C & D matrices
a = [-.15,.5;-.5,-.15]
b = [.2,4;-.4,0]
c = [5,5]
d = [.1,-.1]
sys = system(a,b,c,d)
[a,b,c,d] = abcd(sys)

Simple systems are easily generated as transfer functions. To achieve this we simply
define the numerator and denominator polynomials and then divide one by the other.

3.2. DATA OBJECTS 73

As above, these polynomials can be specified by their roots or their coefficients. Note
that we can specify the variable, and for continuous systems we use “s”. To create a
discrete system “z” is used.

Generate the system from the numerator and denominator
coefficients.
numerator = makepoly([-.1,19.97,-7.02725],"s");
denominator = makepoly([1,0.3,0.2725],"s");
We can also do this by specifying the roots of each
polynomial
numerator = -0.1*polynomial([199.3475;0.3525],"s");
denominator = polynomial(...

[-.15+0.5*jay;-.15-0.5*jay],"s");
Note that multiplying the by -0.1 does the correct
thing to the polynomial above. The final system is
obtained with the command:
sys1 = numerator/denominator

Labeling and Comments

Xmath allows the user to label all the inputs, outputs and states in a state-space system.
Any Xmath variable can also have a comment string associated with it.

Keywords for the system function are used to label the system. In the following
example, the two-input, single-output system generated above is used as the starting
point. Comments can be attached to any variable in the workspace (or the workspace
itself) with the comment command.

Set up vectors of strings for the labels
inputs = ["disturbance";"actuator"]
outputs = ["measurement"]
states = ["x1";"x2"]
and attach them to sys
sys = system(sys,inputNames = inputs,...

outputNames = outputs,...
stateNames = states)

We can also attach a comment to sys
comment sys "Example system for the manual"

74 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Because the dynamic system is a built-in data object, the label information will be
displayed by simply typing the object name (sys in the above) or appending a question
mark to the statement. The core function commentof is used to read the comment
attached to a specified variable.

3.2.2 pdms

A pdm can be thought of as a three-dimensional matrix. The typical control uses are
time or frequency responses, where the domain variable (the third dimension) is time or
frequency. The frequency response of a multiple-input, multiple-output (MIMO) system
is a complex valued matrix at each frequency. A time response of a multiple-output
system is a real valued vector at each time step.

As we would expect, there is a core function for constructing pdms from the raw data:
pdm. The data matrices can be either bottom or right concatenated. If there is an
ambiguity, Xmath assumes that the data was bottom concatenated. Keywords can be
used to specify the row and column dimensions of the data matrices.

To extract the data again, the function makematrix returns the matrix data in right
concatenated form. The domain of a pdm is obtained with the function domain.

Make a pdm with 2 values in the domain
mat1 = random(2,2)
mat2 = -1*random(2,2)
dom = [1;1+pi]
pdm1 = pdm([mat1;mat2],dom)
Extract back the data and the domain
dom = domain(pdm1)
data = makematrix(pdm1)

The pdm data object also contains row, column and domain labels. These can be
appended with the pdm command in exactly the same manner as the Dynamic System

labels illustrated above. Refer to the Xmath Basics manual for graphical illustration and
further details about pdms.

3.2. DATA OBJECTS 75

Appending and Merging Data

Time functions, for creating simulation inputs for example, can be created by combining
pdms. Xmath has two such core functions: concatseg and insertSeg The concatseg
appends the data of one pdm to another. The domain is recalculated such that it is
always regular. The user can specify a new beginning value for the domain and the
spacing is determined by a series of prioritized rules. insertSeg inserts the data from
one pdm into another. It can also “insert” before the beginning, or after the end, of the
first pdm and the resulting gap is filled with zeros. Again the domain of the result is
recalculated from a user specified beginning and is always regular. Both of these
functions are useful in creating time domain waveforms.

In the typical robust control cases where we want to merge pdm data, the result will not
have a regular domain. One example is merging experimental transfer function estimates
from multiple experiments, prior to performing a least squares transfer function fit or
error analysis. For this purpose, Xµ provides a mergeseg function. Keywords allow the
user to specify whether to sort in ascending or descending order or even whether to sort
at all. The following example illustrates the a typical use.

pdm1 and pdm2 have identical row and column
dimensions and at least some non matching
independent variables
pdm3 = mergeseg(pdm1,pdm2,{ascending,!duplicates})

As an aside, note that the sort function in Xmath sorts each column of each matrix in a
pdm, rather than sorting the domain.

Extracting Data by Independent Variable/Domain

It is often useful to be able to extract a segment of matrix data from a pdm. The
function extractseg performs this function. The user has the option of resetting the
domain to a new starting value.

sys1g is a freq. response from 0.1 to 100 rad/sec
select data from 1 to 10 rad/sec as sys1g1
sys1g1 = extractseg(sys1g,1,10)

76 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Data can also be extracted by independent variable index number, by providing a scalar
argument to the pdm. In the following example the fifth through tenth and the
twentieth independent variables are specified for the smaller pdm, pdm2.

size(pdm1)
ans (a row vector) = 1 1 100
pdm2 = pdm1([5:10,20])
size(pdm2)
ans (a row vector) = 1 1 7

Indexing and Finding Data

The core function find returns the indices of the elements of a matrix which meet a user
defined criterion. By using a Boolean function of a matrix as the argument to find, the
an index to the entries satisfying the Boolean function can be generated. This function
works equally well for for pdms.

This is illustrated in the following example.

sys3g is a MIMO frequency response.
We want to find the frequencies where the
SVD of this response exceeds 1.
idx = find(max(svd(sys3g))>1)
domain(sys3g(idx(:,1)))

There are several points to observe here. Both svd and max operate on pdms as well as
matrices. Refer to Section 3.2.4 for additional details. The variable idx is a data object
known as an indexlist. In this case the indexlist has three columns: the domain index,
row index and column index. By selecting the domain index the appropriate sub-pdm

can be selected.

The indexlist command creates the indexlist data object from a given three column
matrix. The indexlist data type can also be used for assigning data to part of a pdm.
This is illustrated in the following example.

Assign the row 2, column 1 element of the 4th domain

3.2. DATA OBJECTS 77

index of the pdm the value 100.
idxlst = indexlist([4,1,2])
pdm1(idxlst) = 100

Operations on the Independent Variables/Domain

The domain of a pdm is readily changed via the pdm command. The following example
illustrates a common application; changing a frequency domain in Hertz to
radians/second.

The following scales the domain of a pdm,
pdm1, by a factor of 2*pi
newpdm = pdm(pdm1,2*pi*domain(pdm1))

Xmath provides a general purpose check which can be used to check whether two pdms
have the same domain. For more information on this function, refer to Section 3.3.1.
The following example illustrates this application.

Check whether or not pdm1 & pdm2 have the
same domains.
stat = check(pdm1,pdm2,{samedomain})
stat = 1 if the domains are the same

3.2.3 Subblocks: selecting input & outputs

Because the Dynamic System is an Xmath data object, standard matrix referencing
can be used to select subsets of the inputs and outputs. This is illustrated in the
following.

Select inputs 1, 3, 4 & 5 and outputs 2 & 7 from the
system: bigsys.
subsys = bigsys([1,3:5],[2,7])

The same format has exactly the same function for pdms.

78 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Select columns 1, 3, 4 & 5 and rows 2 & 7 from the
pdm: bigpdm.
subpdm = bigpdm([1,3:5],[2,7])

This referencing format can also be used to assign data to parts of a larger pdm. This is
shown in the following example.

Replace the 3,2 block of a pdm with its absolute value
pdm1(3,2) = abs(pdm1(3,2))

When selecting subblocks of a Dynamic System or pdm, the appropriate original labels
(input, output and state; row, column and domain) are appended to the subblock.

3.2.4 Basic Functions

In all Xµ functions which operator on Dynamic Systems a matrix input is interpreted
as a system with constant gain: the equivalent of system([],[],[],mat). This
interpretation also applies to binary operations between Dynamic Systems and
matrices in both Xmath and Xµ. For example, +, *, daug,. . . .

In binary operations between pdms and matrices, the matrix is assumed to have a
constant value at each element of the domain of the pdm. Again, this is consistent with
the interpretation of a matrix as a system with no dynamics.

Note that this interpretation works for Xµ and the basic Xmath operations; it will not
necessarily apply to other Xmath modules or more sophisticated Xmath functions.

Augmentation

Augmentation is the building of matrices from component pieces. Dynamic Systems
and pdms can be augmented with the same syntax as matrices. Data objects can be
augmented, side by side, with the command [A, B]. Similarly, [A; B], places A above B.
In Dynamic Systems [A, B] is analogous to summing the outputs of the systems A
and B. [A; B] is analogous to creating a larger system where the input goes to both A

3.2. DATA OBJECTS 79

and B. Augmentation for pdms simply performs the augmentation at each domain
variable. The domains must be the same.

Diagonal augmentation can be performed with the Xµ function daug. This is the
equivalent of the matrix augmentation: [A, 0; 0, B], except that up to 20 arguments
can be augmented in one function call.

Algebraic Operations

In binary operations (e.g. +, -, *) between a Dynamic System and a matrix, the
matrix is assumed to represent the D matrix of a system. In other words, a system with
constant gain (no dynamics).

The transpose operator (’) is well defined for constants, pdms and Dynamic Systems.
In the Dynamic System case it creates the equivalent of the following.

[A,B,C,D] = abcd(sys)
transsys = system(A’,C’,B’,D’)

The conjugate transpose operator (*’) of a Dynamic System creates the adjoint
operator. In other words.

[A,B,C,D] = abcd(sys)
adjsys = system(-A’,-C’,B’,D’)

Random pdms can be created in with the Xµ function randpdm. This is useful for
generating random time domain signals for use in simulations.

Dynamic System Functions

The poles and zeros of Dynamic System can be found with the Xmath core functions
poles and zeros.

Random systems can be created with the Xµ function randsys. The user can also
specify additional system properties; for example, stability, a frequency range for the

80 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

poles, or a zero D term. Generating random systems is useful for simulating systems
with unknown subsystems.

Specialized Xµ functions are provided for useful manipulations of the state. For example
transforming the A matrix to a real valued, 2 × 2 block diagonal form; here referred to
as modal form. These state-space functions are tabulated below.

Description Xµ
function

state similarity transform simtransform
state reordering orderstate
transform to modal form modalstate

The simtransform function is can also be used on constant matrices and pdms. Xmath
has a transfer function data object which does not have a uniquely defined state.
Applying simtransform or orderstate to a transfer function data object returns a
warning and an unchanged transfer function. Applying modalstate to a transfer
function gives the appropriate state-space representation. With modalstate it is possible
to specify whether the resulting modes are in ascending or descending magnitude order
and whether or not the unstable modes are ordered separately from the stable ones.

pdm Functions

A wide range of matrix functions can also be applied to pdms. Xµ provides several
additional functions which are often of use in typical control applications.

The function spectrad calculates the spectral radius (maximum magnitude eigenvalue)
of a matrix or pdm.

Xmath provides an interpolation function (interpolate) which does only first order
interpolation. There is also a built-in function, spline, for higher order spline fitting.
Zero order interpolation is often required, particularly for looking at fine details in the
inputs of Dynamic System responses. An additional Xµ interpolation function
(interp) is used for this purpose. This command is also useful for mapping data on an
irregularly spaced domain (from experiments for example) to a regular domain.

Simple decimation is easily performed on pdms by direct indexing. The following
example illustrates this.

3.3. MATRIX INFORMATION, DISPLAY AND PLOTTING 81

N is the decimation ratio.
smallpdm = bigpdm([1:N:length(bigpdm)])

3.2.5 Continuous to Discrete Transformations

Xmath has a single function, discretize, for calculating continuous to discrete
transformations. Several options are offered including forward and backward difference,
Z-transform equivalent, bilinear and pole-zero matching.

Xmath also has a makeContinuous function which performs the inverse of the
discretize function. Naturally, it is only an inverse if certain pole/zero location and
sampling period relations are assumed to hold.

3.3 Matrix Information, Display and Plotting

3.3.1 Information Functions for Data Objects

The data object information is available in Xmath via the variable window. This
displays the data object classification, row and column information and any associated
comment for each variable in the workspace. For pdms or Dynamic Systems the
domain or state dimension is also displayed. If open, this window is updated
continuously; closing it will speed up calculations.

The Xmath command who displays dimensional information in the command log
window. pdms and Dynamic Systems both appear as three dimensional objects and it
is not possible to distinguish between them using this command alone. The core
function whatis displys the data object type.

Within an Xmath function, data object attributes can be determined with the check or
is functions. These have similar formats, with check being the more powerful. The
function size is used to determine the actual dimensions.

82 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

3.3.2 Formatted Display Functions

It is often useful to consider complex numbers in terms of frequency and damping. This
is particularly applicable when studying the poles or zeros of a system. The command
rifd provides a real-imaginary-frequency-damping formatted display for complex valued
input. The following example illustrates the most common usage.

display the poles locations of system: sys1
rifd(poles(sys1))

Using the keyword {discrete} will give the display in terms of z-plane rather than the
s-plane. If the input to rifd is a Dynamic System then both the poles and zeros are
calculated and displayed.

3.3.3 Plotting Functions

As pdms are a native data object in Xmath, the standard Xmath plot function will
correctly plot a pdm. Multiple pdms over differing domains can be handled with
repeated calls to the plot function by using the graphical object created from the
previous plot call. The Xmath Basics manual describes this feature in detail.

The Xµ function ctrlplot provides more control system specific plotting capabilities.
Keywords allow the user to easily specify Bode, Nyquist, Nichols and other plots.
Because it handles graphic objects in a similar manner to plot, the resulting plots can
be modified by subsequent plot function calls. An example is given below.

sys1 = 1/makepoly([1,1],"s")
sys2 = 2*sys1*10/makepoly([1,1,10],"s")

w1 = logspace(0.01,10,50)’
w2 = sort([w1;[0.35:0.01:0.65]’])
sys1g = freq(sys1,w1)
sys2g = freq(sys2,w2)

Bode plots

3.3. MATRIX INFORMATION, DISPLAY AND PLOTTING 83

g1 = ctrlplot(sys1g,{bode});
g1 = ctrlplot(sys2g,g1,{bode});
g1 = plot({keep=g1,title = "Bode plots",...

legend = ["sys1","sys2"]})?

Frequency

0.1 10.01 10

M
ag

ni
tu

de

0.0001

0.001

0.01

0.1

1

1e-05

10

Bode plots

sys1

sys2

Frequency

0.1 10.01 10

P
ha

se
 (

de
gr

ee
s)

-250

-200

-150

-100

-50

-300

0

84 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Nyquist plots

g2 = ctrlplot(sys1g,{nyquist});
g2 = ctrlplot(sys2g,g2,{nyquist});
g2 = ctrlplot(-1,g2,{nyquist,marker=1,line=0});
g2 = plot(g2,{projection="orthographic",...

legend=["sys1","sys3","critical point"],...
title="Nyquist plots"})?

Real

-1 0 1-2 2

Im
ag

in
ar

y

-1.5

-1

-0.5

0

-2

0.5
Nyquist plots

sys1

sys3

critical point

3.4. SYSTEM RESPONSE FUNCTIONS 85

3.4 System Response Functions

3.4.1 Creating Time Domain Signals

The Signal Analysis Module contains several functions which are useful for building time
domain signals: gcos and gsin. Xµ provides gstep for the creation of stair-step signals.
The example below illustrates the generation of a sine wave and a step function.

A unit step over 10 seconds
time = 0:10:.1
y1 = gstep(time)
multiple steps over 10 seconds
sdata = [1;-2;4]
tdata = [3;5;7]
y2 = gstep(time,tdata,sdata)
Freq: 2 Hz, Ampl: 0.5
y3 = 0.5*gsin(time,2)

Because of the native pdm data type, and the ease in which pdms can be augmented,
vector (or even matrix) valued signals are easily created. For example:

A function depending on t
time = 0:10:.1
y1 = pdm(exp(0.1*time),time) - gsin(time,3/(2*pi))
A function independent of t
y2 = uniform(time)
A 2 x 2 pdm
pt = pdm(time,time)
y3 = [pt/max(time),2*Cos(3*pt+0.2));...

2+Sin(2*pt),sqrt(pt)+0.3*random(pt)]

3.4.2 Dynamic System Time Responses

In Xmath time responses can be calculated by simply multiplying a Dynamic System

by a pdm. A zero-order hold equivalent is used with the sampling interval set to the

86 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

spacing in the input signal pdm. This means that the input pdm must be regularly
spaced. Stair-case input functions with relatively few data points will often give
erroneous results. The input signal should be interpolated (with interp) before being
multiplied with the Dynamic System. The function defTimeRange will calculate a
default integration step size and form the required time vector. This can be useful in
creating an input pdm or as an input to interp. Note that the initial state is specified
within the Xmath Dynamic System.

Discrete time Dynamic Systems do not require an additional command as the time
increment is contained within the Dynamic System data object. The time step in the
input pdm must of course match the discrete system sample time.

Xmath also provides several core functions for common time response calculations: step
calculates the unit step response; impulse calculates the impulse response; and initial
calculates the unforced response from initial conditions specified within the Dynamic

System or provided as input arguments. In each of these functions the user may specify
a time to override the default selected by defTimeRange.

Time response calculations are illustrated in the following example. Several of the
functions discussed in the previous sections are also used.

Create a second order lightly damped system.

sys = 5/makepoly([1,1,5],"s")

Create an input signal with a step to +1 at
1 second and a step to -1 at 5 seconds. A
10 second signal is created.

u = gstep([0:0.05:10],[0;1;5],[0;1;-1])

Calculate the time response.

y0 = sys*u

Repeat this calculation with an initial
condition of [-1;0]. Note that this is
only meaningful for a specified realization
and Xmath forces us to choose one. Here we
choose that returned as the abcd default

3.4. SYSTEM RESPONSE FUNCTIONS 87

[a,b,c,d] = abcd(sys)
sys = system(a,b,c,d)
y1 = system(sys,{X0=[-1;0]})*u

Now plot the result

g1 = ctrlplot(u,{line style=2});
g1 = ctrlplot(y0,g1,{line style=1});
g1 = ctrlplot(y1,g1,{line style=4});
g1 = plot(g1,{!grid})?

2 4 6 80 10

-2

-1

0

1

-3

2

The native Xmath time domain simulation, using the * operation, has been
supplemented with an Xµ function: trsp. This provides automatic selection of the
integration time and, if necessary, interpolates the input signal appropriately. trsp also
gives the option of linear interpolation of the input vector and a triangle hold equivalent
discretization of the integration. This simulates the response of the system to signals
which are linearly interpolated between samples. The syntax of the function is
illustrated below.

y = trsp(sys,u,tfinal,{ord,intstep})

sys, u, and tfinal are the dynamic system, input signal and final time respectively. ord

88 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

and intstep are the interpolation order and integration step size. The system must be
continuous. The integration order and sample time are prespecified for discrete time
systems making the * operator is suitable for such simulations.

Xµ provides a sampled data simulation function (sdtrsp) based on the interconnection
structure shown in Figure 3.1.

M(s)

N(z)

� �

-

�

v w

y u

Figure 3.1: Interconnection structure for sampled data simulation

The signals v and y are the continuous outputs of the continuous system, M(s). The
simulation assumes that y is sampled and used as the input to the discrete system,
N(z). The output of N(z), u(s) is assumed to be held with a zero order hold. All signals
are calculated with the sample spacing determined by the continuous time system
integration step size. The output of N(z) can be delayed by a fraction of the discrete
time system sample time. This is useful for simulating systems with a partial period
calculation delay; a situation which frequently occurs in practice.

3.4.3 Frequency Responses

The Xmath function freq is used for frequency response calculation. The input is a
Dynamic System and a vector of frequency points. The frequency points can
alternatively be specified by minimum and maximum variables and one of two other
choices: the total number of points or phase tracking. If the total number of points is
specified these are logarithmically spaced. If phase tracking is specified the points are
selected such that the phase difference between points is less than a prespecified

3.4. SYSTEM RESPONSE FUNCTIONS 89

maximum. This can be handy when first examining a high order system. An example is
given below.

Create a single-input, two-output system.

sys = [1/makepoly([1,0.1,1],"s");...
makepoly([1,1],"s")/makepoly([1,10],"s")]

The automatic point selection is used.

sysg = freq(sys,{Fmin=0.01,Fmax=100,track})

Now plot the result

ctrlplot(sysg,{bode})?

90 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Frequency

0.1 1 100.01 100

M
ag

ni
tu

de

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-06

100

Frequency

0.1 1 100.01 100

P
ha

se
 (

de
gr

ee
s)

-150

-100

-50

0

50

-200

100

Note that the default frequency units in Xmath are Hertz. This applies generically to all
functions where the user specifies frequency information, although many functions allow
radians/second to be specified via a keyword.

3.5. SYSTEM INTERCONNECTION 91

sys2

sys1

�

�

�

�

�

�

`
`
`
`
`
`
`
`̀

dim1

dim2

bigsys

Figure 3.2: Generic Redheffer interconnection structure

3.5 System Interconnection

Interconnections of systems are used extensively in the design, analysis and simulation
calculations. The most general form of interconnection, and the one used in forming
closed loop systems, is the Redheffer (or star) product. The Xµ function starp performs
this operation. This Redheffer product operation is illustrated in Figure 3.2. A MIMO
Dynamic System (or matrix) is created from two MIMO Dynamic Systems.

The syntax of the command to form this interconnection is,

bigsys = starp(sys1,sys2,dim1,dim2)

A more powerful, general, interconnection capability is given with the Xµ function
sysic. This can be used to interconnect subsystems (Dynamic Systems or constant
gain matrices) in an arbitrary manner. This is best illustrated by an example. Consider
the interconnection shown in Figure 3.3.

In each case it is assumed that the systems p, c, and wght, exist in the workspace prior
to calling sysic. The final four-input, three-output system is shown in Figure 3.4.

92 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

wght 7.5

p c

1.6

l+
�

l+

l+

l+

tt
t

��

6

�

6

6

�

?

?

�

?

- -

6

?

-

�

y

noise(1)

noise(2)

dist act

err

ref

Figure 3.3: Example interconnection of subsystems

clp

�

�

�

�

�

�

�

ref

dist

noise(1)

noise(2)

y

act

err

Figure 3.4: Example interconnected system

3.5. SYSTEM INTERCONNECTION 93

Using sysic to form this interconnection can be considered as four distinct operations.

• Specify the individual subsystems.

• Name and dimension the input signals.

• Specify, algebraically in terms of subsystem outputs or input signals, the output of
the interconnected system.

• Specify, algebraically in terms of subsystem outputs or input signals, the input to
each of the subsystems.

• Name the closed loop system.

The Xµ script used to create the closed-loop system variable clp is shown below. A
single-input, two-output plant is considered. sysic is used to form the closed loop system
for a particular controller. Noise and disturbance signals, in addition to a command
reference, are considered as inputs. Tracking error and the control actuation are the
outputs of interest.

form the subsystems

p1 = [1;1]*(1/makepoly([1,1,40],"s"));
p = daug(1,1/makepoly([1,1],"s"))*p1;
c = [50*makepoly([1,1],"s")/makepoly([1,10],"s"),-20];
wght = 0.01;

Name the subsystems - these must match with the workspace variables.

snames = ["p"; "c"; "wght"]

Name the final system inputs (names are arbitrary) Parenthesis are used to give a
dimension > 1.

inputs = ["ref"; "dist"; "noise(2)"]

94 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Specify the outputs in terms of the subsystem names and the input names. Note that
individual outputs of MIMO systems and simple arithmetic combinations can be
specified. Parenthesis specify which output of a MIMO system is to be used.

outputs = ["p(1) + wght"; "7.5*c";
"ref - 1.6*p(1) - 1.6*noise(2) - 1.6*wght"]

Now specify the inputs to each of the named subsystem. The order is important. Note
how the input to a multiple-input system (”c”) is specified.

conx = ["c";...
"ref-1.6*p(1)-1.6*noise(2)-1.6*wght; p(2)+noise(1)";...
"dist"]

Now the final system (clp) is formed.

clp = sysic(snames,inputs,outputs,conx,p,c,wght)

size(clp)?
ans (a row vector) = 3 4 4

rifd(clp)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.5627e+00 0.0000e+00 1.5627e+00 1.0000
-4.4373e+00 0.0000e+00 4.4373e+00 1.0000
-3.0000e+00 -9.4375e+00 9.9028e+00 0.3029
-3.0000e+00 9.4375e+00 9.9028e+00 0.3029

Zeros:

real imaginary frequency damping

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 95

(rad/sec) ratio

-1.0000e+00 0.0000e+00 1.0000e+00 1.0000
-5.0000e-01 6.3048e+00 6.3246e+00 0.0791
-5.0000e-01 -6.3048e+00 6.3246e+00 0.0791
-1.0000e+01 0.0000e+00 1.0000e+01 1.0000

The order of the names in the systemname variable, must match the order of the rows in
the connections variable and the order of the last arguments in the sysic function call.

3.6 H2 and H∞ Analysis and Synthesis

This section discusses the synthesis functions available in Xµ. A weighted
interconnection structure is set up so that either H2 or H∞ design methods can be
applied. This discussion assumes that the reader is familiar with the theory and
application of these methodologies. Section 2.3 gives a more detailed overview of the
theory and outlines the algorithms used in the calculations. For specific design examples
and further discussion refer to the demos given in Section 4.1.

3.6.1 Controller Synthesis

The generic synthesis interconnection structure is illustrated in Figure 3.5. The
objective is to design K(s) such that the closed loop interconnection is stable and the
resulting transfer function from w to e (denoted by G(s)) satisfies either an H2 or H∞
norm objective.

Xµ provide functions to calculate the controllers minimizing either the H2 or H∞ norm
of G(s); h2syn and hinfsyn respectively.

Recall from Section 2.3 that the minimizing H2 norm controller (calculated by h2syn) is
unique. The format of this function is given below.

k = h2syn(p,nmeas,ncon)

The variable p is the open loop interconnection structure (P (s) in Figure 3.5). This

96 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

P (s)

K(s)

� �

-

�

G(s)

e w

y u

Figure 3.5: Interconnection structure for controller synthesis

structure contains more than just the open loop plant. It typically also contains
frequency dependent weighting functions and specifies the structure of the
interconnection between the open loop plant and the controller. The dimensions of y
and u are specified by nmeas and ncon. The underlying Riccati equations can be solved
by either an eigenvalue or Schur decomposition method. A keyword specifies the desired
Riccati solution method. A simple is example is given at the end of this section.

The hinfsyn function calculates a controller, K(s), which makes ‖G(s)‖∞ ≤ γ for a user
specified γ. It is not possible to make γ arbitrarily small; there is a minimum value for γ
(referred to as γopt) and γopt is not known a priori in a design problem. Therefore
hinfsyn can also perform a bisection search for the smallest γ > γopt and use this value
of γ for the control design. Again, Section 2.3 gives the relevant theoretical details.

The syntax of hinfsyn is illustrated below. The final bound on the achieved γ is
returned as gfin.

[k,gfin] = hinfsyn(p,nmeas,ncon,gamma)

If gamma is a scalar, the controller achieving that γ value is calculated, if one exists. If
gamma is a two element vector a bisection search for the smallest γ value is performed.
The function displays various intermediate calculations related to the eigenvalues of the
Hamiltonian and the positivity of the Riccati solutions. As γ approaches γopt the Riccati

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 97

equation solution procedure often becomes poorly conditioned. Displaying intermediate
calculation results allows the user to fine tune several tolerances if necessary. The
intermediate Hamiltonian and Riccati solution details are displayed as the bisection
proceeds. The bisection stopping tolerance, Riccati solution tolerances and the Riccati
solution method are specified via keywords. Details on the meaning of these tolerances
are given in Section 2.3.5.

We now give a simple example illustrating the use of these functions. An oscillatory
non-minimum phase SISO system is to be controlled in a unity gain negative feedback
configuration. This example is for pedagogical purposes only and does not illustrate the
generality of the approach with respect to MIMO systems and more general control
configurations. The weighting functions have been chosen to be appropriate for an H∞
design. The performance weight, Wperf, is close to 1/s giving good tracking. The
actuator weight, Wact, increases at high frequency, penalizing fast actuator action. A
sensitivity function and step response comparison have been included to illustrate
typical function calls for these procedures. Inappropriate weight choices make this
comparison blantantly unfair to the H2 approach; the user should not drawn any
conclusions about the relative merits of either approach from this example.

Set up a simple closed loop problem.
plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...

/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Examine the plant frequency response.

omega = logspace(0.001,100,200)
plantg = freq(plant,omega)
g0 = ctrlplot(plantg,{bode});
g0 = plot(g0,{title="Open loop plant"})?

98 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.1

1

10

0.01

100

Open loop plant

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-300

-200

-100

-400

0

The desired closed loop configuration is illustrated in Figure 3.6.

plant k l+
�

���� t
6

refu

Figure 3.6: Closed loop configuration

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 99

Wperf

Wact

plantl+
�

t t?
�

�

��

��

�

e(1)

e(2)

y

ref

u

p

Figure 3.7: Weighted design interconnection structure: p

In order to set up the design problem, we consider ref as an unknown input and the
tracking error (input to k), and the actuator signal, u, as outputs to be minimized.
These outputs are weighted with the weights Wperf and Wact respectively. The weighted
interconnection structure for design, p, is illustrated in Figure 3.7.

A more realistic problem would also include weighted noise on the measurement signal,
y. We could also weight the ref input and add weighted disturbances to the plant input
or output.

Create weights

Wperf = 100/makepoly([100,1],"s")
Wact = makepoly([0.5,0.05],"s")/makepoly([0.05,1],"s")

Wperfg = freq(Wperf,omega)
Wactg = freq(Wact,omega)
g00 = ctrlplot(Wperfg,{logmagplot});
g00 = ctrlplot(Wactg,g00,{logmagplot,line style=4});
g00 = plot(g00,{title="Weighting functions",...

legend=["Wperf";"Wact"],!grid})?

100 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Frequency

0.01 0.1 1 100.001 100

Ma
gn

itud
e

0.01

0.1

1

10

0.001

100

Weighting functions

Wperf

Wact

Form the weighted interconnection structure

sysnames = ["plant";"Wperf";"Wact"]
sysinp = ["ref";"u"]
sysout = ["Wperf"; "Wact"; "ref-plant"]
syscnx = ["u";... # input to plant

"ref-plant";... # input to Wperf
"u"] # input to Wact

p = sysic(sysnames,sysinp,sysout,syscnx,plant,...
Wperf,Wact)

Design Hinf controller

nctrls = 1
nmeas = 1
gmax = 25
gmin = 0
Kinf = hinfsyn(p,nmeas,nctrls,[gmax;gmin])

Test bounds: 0.0000 < gamma <= 25.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
25.000 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 101

12.500 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
6.250 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
3.125 5.1e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
1.562 5.0e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
0.781 3.9e-01 -9.8e+01 1.0e-02 0.0e+00 0.0000 f
1.172 4.8e-01 1.8e-03 1.0e-02 0.0e+00 0.0000 p

Gamma value achieved: 1.1719
rifd(Kinf)
Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.0000e-02 0.0000e+00 1.0000e-02 1.0000
-1.0347e+00 0.0000e+00 1.0347e+00 1.0000
-2.6846e+00 2.3017e+00 3.5362e+00 0.7592
-2.6846e+00 -2.3017e+00 3.5362e+00 0.7592
-1.2692e+01 0.0000e+00 1.2692e+01 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

Design H2 controller

K2 = h2syn(p,nmeas,nctrls)
rifd(K2)

Poles:

real imaginary frequency damping

102 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

(rad/sec) ratio

-1.4046e-01 -2.3161e-01 2.7087e-01 0.5186
-1.4046e-01 2.3161e-01 2.7087e-01 0.5186
-1.5863e+00 3.4754e+00 3.8203e+00 0.4152
-1.5863e+00 -3.4754e+00 3.8203e+00 0.4152
-5.2060e+00 0.0000e+00 5.2060e+00 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

Look at frequency responses of the controllers
Kinf and K2

Kinfg = freq(Kinf,omega)
K2g = freq(K2,omega)
g1 = ctrlplot(Kinfg,{logmagplot});
g1 = ctrlplot(K2g,g1,{logmagplot,line style=4});
g1 = plot(g1,{title="Controllers",legend=["Kinf";"K2"]})?

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 103

Frequency

0.01 0.1 1 100.001 100

Ma
gn

itud
e

0.001

0.01

0.1

1

0.0001

10

Controllers

Kinf

K2

Examine sensitivity functions

sensinf = inv(1 + plant*Kinf)
sensinfg = freq(sensinf,omega)
sens2 = inv(1 + plant*K2)
sens2g = freq(sens2,omega)

g2 = ctrlplot(sensinfg,{logmagplot});
g2 = ctrlplot(sens2g,g2,{logmagplot,line style=4});
g2 = plot(g2,{title="Sensitivity functions",...

legend=["Kinf","K2"],!grid})?

104 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Frequency

0.01 0.1 1 100.001 100

Ma
gn

itud
e

0.1

1

0.01

10

Sensitivity functions

Kinf

K2

Note that with the interconnection structure shown in Figure 3.7, the closed loop
transfer function from ref to e(1) is simply Wperf*sensinf. If the H∞ of the resulting
closed loop system was less than one, this would guarantee that sensinf was less than
inv(Wperf) at every frequency. Note that from the above plot, this is not quite
satisfied; as we might expect because the closed loop H∞ norm is approximately 1.17.

Now look at some step responses. Use sysic to create an unweighted interconnection
(because the weightings are only for design purposes and are not actually implemented
in the system). We create an open-loop interconnection and close the loop with starp for
each controller.

ic = sysic("plant",["ref";"ctrl"],["plant";"ref-plant"],...
"ctrl",plant)

clpinf = starp(ic,Kinf)
clp2 = starp(ic,K2)

Examine step response

step = gstep([0:0.1:10],0,1)
yinf = clpinf*step
y2 = clp2*step
g3 = ctrlplot(yinf);
g3 = ctrlplot(y2,g3,{line style=4});

3.6. H2 AND H∞ ANALYSIS AND SYNTHESIS 105

g3 = ctrlplot(step,g3,{line style=2});
g3 = plot(g3,{title="Step responses",...

legend=["Kinf";"K2";"input"]})?

2 4 6 80 10

0.2

0.4

0.6

0.8

1

0

1.2

Step responses

Kinf

K2

input

3.6.2 System Norm Calculations

Functions are provided for calculating the H2 and H∞ norms of Dynamic Systems. In
the H2 case, this involves the solution of a Lyapunov equation. A bisection method,
involving the calculation of eigenvalues of a scaled Hamiltonian matrix, is required for
the H∞ norm calculation.

The Xµ function for the two norm calculation is called h2norm. The syntax and
operation are self explanatory.

The calculation of the H∞ norm involves the iterative solution of a Riccati equation.
The technique is a generalization of the the theoretical result given in Lemma 2 in
Section 2.3.3. As a result, a tolerance can be specified, and the calculation gives upper
and lower bounds. The function is hinfnorm. The syntax is illustrated below.

[out,omega] = hinfnorm(system,tol)

106 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Bounds on the H∞ norm are returned as out. An estimate of the frequency where the
norm is achieved is returned as omega. Further control of the iteration is available via
keywords.

The following example calculates the H2 and H∞ norms of each of the closed loop
systems arising from the previous example. Notice that G2 has the minimum

H2 norm and Ginf has the minimum H∞ norm. We can also see that the Ginf has a
slightly lower norm than the bound guaranteed from the hinfsyn function call.

Calculate the norms of each closed loop system.

Ginf = starp(p,Kinf)
G2 = starp(p,K2)

hinfnorm(Ginf)?
ans (a column vector) =

1.17032
1.16915

hinfnorm(G2)?
ans (a column vector) =

36.2138
36.1776

h2norm(Ginf)?
ans (a scalar) = 2.86197

h2norm(G2)?
ans (a scalar) = 2.78655

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 107

3.7 Structured Singular Value (µ) Analysis and
Synthesis

This section covers the functions used in the D-K iteration procedure. The primary
functions are the calculation of the controller (already discussed), the calculation of µ
and the fitting of rational D scales. Several subroutines used for D scale fitting are
useful in their own regard and are also discussed here. The discussion below assumes
that the reader if familiar with the definition and use of µ; only the implementation
issues are covered here. A simple application example is given here. To get a better idea
of the standard approaches to µ and the D-K iteration, the reader should refer to the
demos in Chapter 4. To find out more about the theoretical aspects of µ, including its
application to robust stability and robust performance problems, refer to Section 2.4.

3.7.1 Calculation of µ

The function mu calculates the structured singular value. µ is is defined as a function of
a matrix and a specified block structure. The most common use involves calculating µ at
each frequency of a system frequency response. For this reason the µ function accepts
pdm input arguments as well as matrices. The block structure is specified to the
function in a coded form.

In general only upper and lower bounds for µ are calculated. The upper bound (for the
square ∆ block case) is given by,

µ(M) ≤ inf
D∈D

σmax

[
DMD−1

]
,

where D is the set of all matrices which commute with the perturbation, ∆. Recall that
the lower bound is given by,

max
Q∈Q

ρ(MQ) ≤ µ(M),

where ρ denotes the spectral radius and Q is the set of all unitary perturbations of the
specified block structure. The matrix Q achieving this maximization is a destabilizing ∆.

108 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

The outputs of the µ function are: the upper and lower bounds for µ; the D matrix for
the upper bound; the Q matrix for the lower bounds; and a sensitivity estimate for the
part of the D matrix corresponding to each block in ∆. The sensitivity estimate is
essentially the gradient of the upper bound value with respect to the value of the D
scale. It is useful in weighting the D scale fitting procedure.

The function syntax is shown below.

[mubnds,D,Dinv,Delta,sens] = mu(M,blk)

The upper and lower bounds are returned in mubnds. The variable sens gives a measure
of the sensitivity of the upper bound to the D matrix. Both D and Q are returned as
the matrices (or pdms) D and Delta. Note that the inverse of D, used in the calculation
of the upper bound, is also returned (as Dinv). This is done as, in the non-square ∆
block case, the dimensions of D and D−1 are different.

The block structure is a vector of dimension: number of blocks × 2. For each block the
output and input dimension is specified. To specify a scalar × identity block, the input
dimension is set to zero.

A power iteration, with several random restarts, is used for the lower bound. The upper
bound calculation uses an Osborne balancing method and enhances this with the Perron
vector method for problems with less than 10 blocks. These methods have been found to
be appropriate for the vast majority of practically motivated problems.

New algorithms for these calculations are currently under development. The most
significant enhancement is the ability to calculate µ with respect to structures which
include real valued blocks. Because of the development effort in this direction, a wide
range of calculation options were not provided for the mu function.

The following example gives the simplest matrix with a gap between µ and the D-scale
upper bound. It also illustrates the use of the mu function for constant matrices.

The following is the classic example showing that mu is not equal to its upper bound for
more than three full blocks. We include a random scaling here to give a non-trivial
D-scale.

gamma = 3 + sqrt(3); beta = sqrt(3) -1
a = sqrt(2/gamma); b = 1/sqrt(gamma)

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 109

c = 1/sqrt(gamma); d = -sqrt(beta/gamma)
f = (1+jay)*sqrt(1/(gamma*beta))
psi1 = -pi/2; psi2 = pi

U = [a,0; b,b; c,jay*c; d,f]
V = [0,a; b,-b; c,-jay*c; f*exp(jay*psi1), d*exp(jay*psi2)]
scl = diagonal(random(4,1)+0.1*ones(4,1))
M = scl*U*V*’*inv(scl)

Consider four 1×1 blocks. In this example mu is approximately 0.87.

blk1 = [1,1; 1,1; 1,1; 1,1]
[mubnds1,D1,Dinv1,Delta1] = mu(M,blk1)

max(svd(M))? # a very crude upper bound
ans (a scalar) = 3.17155

max(svd(D1*M*Dinv1))? # the D scale upper bound
ans (a scalar) = 1

mubnds1?
mubnds1 (a column vector) =

1
0.864113

Consider one 4×4 block (equivalent to maximum singular value).

blk2 = [4,4]
[mubnds2,D2,Dinv2,Delta2] = mu(M,blk2)

Note that the perturbation is such that det(I − MDelta) = 0.

max(svd(D2*M*Dinv2))?
ans (a scalar) = 3.17155

110 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

mubnds2?
mubnds2 (a column vector) =

3.17155
3.17155

det(eye(4,4) - M*Delta2)?
ans (a scalar) = -2.62055e-16 + 5.82345e-17 j

3.7.2 The D-K Iteration

Recall from Section 2.5 that the D-K iteration is used as an approximation to µ
synthesis. This section discusses how Xµ implements this procedure.

The D-K iteration procedure is as follows. The weighted design interconnection
structure is referred to as P. The successive controllers are K i, i = 1,. . . and the
successive closed loop systems are G i, i = 1,. . . . The block structure is coded within
blk; nmeas is the number of controller measurements, and nctrls is the number of
controller actuators outputs.

1. Set i = 1.

2. Design an initial H∞ controller, K 1, for the interconnection structure, P.

K 1 = hinfsyn(P, nmeas, nctrls, gamma limits).

3. Form the closed loop,

G i = starp(P, K i).

4. Calculate µ(G i) as follows.

[bnds, D i, Dinv i, Delta i, sens i] = mu(G i, blk).

This calculation gives the D-scales for the upper bound: D i. Figure 3.8 illustrates
this step.

5. Compare the closed loop to the design specifications; this will involve more than
just the calculation of µ. The user has several options at this point:

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 111

(a) Controller and closed loop are satisfactory so stop the iteration.

(b) The iteration has converged and the controller and closed loop are not
satisfactory. In this case the weighted design problem must be reformulated.

(c) The iteration has not yet converged. Continue with step 6.

6. Fit rational approximations to D i and Dinv i. The function to do this, musynfit,
is described in more detail in Section 3.7.3. A typical function invocation is,

[Dsys i, Dinvsys i] = musynfit(D i, blk, nmeas, nctrls, sens i).

7. Apply rational approximations to D-scales to the weighted interconnection
structure. This is equivalent to,

P D = Dsys i ∗ P ∗ Dinvsys i.

8. Set i = i + 1

9. Design an H∞ controller, K i, for the interconnection structure, P D.

K i = hinfsyn(P D, nmeas, nctrls, gamma limits).

This step is illustrated in Figure 3.9.

10. Go to step 3.

D i

K i

P
Dinv i� � � �

-

�

G i

Figure 3.8: µ calculation in the D-K iteration: Step 3 in the enumerated procedure. Note
that µ(G i) ≤ σmax(D i*G i*Dinv i)

The above iteration uses a standard H∞ design. It is possible to use the D-K iteration
procedure with any MIMO design procedure (H2 for example).

112 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Dsys i P Dinvsys i

K j, (j=i+1)

� � � �

�

-

��

P D

Figure 3.9: H∞ controller design. Step 9 in the enumerated procedure

There is actually another possibility at step 5; numerical problems cause the iteration to
diverge. As γ approaches its optimal value, the numerical properties of the calculation
deteriorate. This may lead to mu(G i) increasing as i is increased. This problem is
observed more often in systems with very lightly damped modes.

A comparison of Figures 3.8 and 3.9 will show that Dsys i is not quite a rational
approximation to D i. The reason is that Dsys i has as inputs, the lower outputs of P .
These are actually passed through an identity for the design of the next controller: K j
(with j = i+1). In other words,

Dsys i ≈
[
D i 0
0 I

]
.

This identity is of dimension nmeas × nmeas and is the reason that nmeas and nctrls
must be passed to the musynfit function. Do not confuse this identity with that
corresponding to the last block in D i.

3.7.3 Fitting D Scales

The Xµ D-scale fitting function is musynfit; the syntax is as follows.

[Dsys,Dinvsys] = musynfit(Dmagdata,blk,nmeas,nctrls,weight)

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 113

Both the D and D−1 systems (Dsys and Dinvsys) are returned. The D scale
(Dmagdata) comes from a µ calculation on a closed loop system. However, Dsys and
Dinvsys are required to multiply the open loop system. They must therefore contain the
identity matrices for the inputs and outputs which correspond to the measurements and
controls. This information is not contained in blk and must be specified in the argument
list: nmeas is the number of measurements and ncntrl is the number of controls. The
user can specify a frequency domain weight for the fitting. The variable sens, returned
from the mu function, is a good option.

There are several choices of rational fitting functions available within musynfit. The
D-scale input variables are magnitude data. Phase data, corresponding to a
minimum-phase system is supplied with the Xµ function mkphase. The user has a choice
of functions for the transfer function fitting: the Xmath function tfid and the Xµ
function fitsys. The fitsys function is discussed in more detail in Section 3.7.3 below.
For further information on tfid see the Xmath Basics Manual.

There are several choices of graphical display available to help the user select the most
appropriate fit. These are:

1. The D-scale magnitude data and the last two transfer function fits are displayed.

2. The D-scale magnitude data and the last two transfer function fits are displayed.
An additional plot shows the weighting function.

3. The D-scale magnitude data and the last two transfer function fits are displayed.
An additional plot compares the µ upper bound (which uses the D-scale
magnitude data) to the bound which would be obtained from a frequency response
of the D-scale transfer function fit.

In a problem with n perturbation blocks, there are n − 1 D scales requiring fitting. This
is because one can be chosen as the identity without loss of generality. The D scale for
each block requires user interaction for the selection of the system order. The function
fitsys is called to fit each D scale block. This is available to the user and is described
in more detail below.

Transfer Function Fitting Functions

The underlying functions used for the fitting of each block of the D scale are described
here as they may be of independent interest to the user. Other possible uses include

114 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

creating weights from data and simple system identification.

Xµ provides two user callable functions for fitting SISO transfer functions to data. The
first is mkphase calculates the phase corresponding to a minimum-phase stable system
from magnitude data. This uses the complex cepstrum method described by Oppenheim
and Schafer [80, p. 501] to generate the desired frequency response. The syntax of the
function is given below.

cdata = mkphase(magdata)

The complex cepstrum method is used to generate the complex valued frequency
response,cdata, of a SISO minimum-phase system with magnitude response magdata.

The Xµ function fitsys fits a dynamic system to frequency domain data. The syntax is
illustrated below.

sys = fitsys(data,npoles,nzeros,weight)

The number of poles and zeros in the system, sys, can be independently specified by the
arguments npoles and nzeros. When called from musynfit these are always identical
as an invertible system is required. This may not be appropriate for other applications
of fitsys. For logscale frequency data a weight of 1/s is strongly recommended as this
tends to balance the effects of high and low frequencies in the fit. In musynfit a 1/s
weight is automatically applied and multiplies any other user specified weight.

Chebyshev polynomials are used as basis functions for both the numerator and
denominator polynomials. For further information see the work by Adcock [81]. The
fitsys function is similar to the Xmath function tfid. The algorithm in fitsys has
been fine-tuned for D-scale fitting and usually outperforms tfid in this application.

We will now look at a simple design example using D-K iteration. The plant is a double
integrator with an output perturbation. For more physically meaningful examples refer
to Chapter 4.

The nominal plant is a double integrator.
A multiplicative perturbation weight reflects
increased uncertainty at high frequencies

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 115

plant = 1/makepoly([1,0,-0.01],"s")
Wm = makepoly([1,20],"s")/makepoly([1,200],"s")
omega = logspace(0.01,100,25)
plantg = freq(plant,omega)
Wmg = freq(Wm,omega)
g1 = ctrlplot(plantg,{logmagplot});
g1 = ctrlplot(Wmg,g1,{logmagplot,line style=4});
g1 = plot(g1,{!grid,legend=["Open loop plant";...

"multiplicative perturbation weight"]})?

Frequency

0.1 1 100.01 100

Ma
gn

itud
e

1e-05

0.0001

0.001

0.01

0.1

1

10

1e-06

100

Open loop plant

multiplicative perturbation weight

The open-loop system under consideration is illustrated in Figure 3.10.

� Wm

plantl+� � �r

��

? u

Figure 3.10: Open loop perturbation model

Now include some weights for performance:

116 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Wperf = makepoly([0.01,1],"s")/makepoly([1,0.01],"s")
Wact = 0.1* makepoly([1,1],"s")/makepoly([0.05,1],"s")
Wnoise = 0.01
Wref = makepoly([0.005,1],"s")/makepoly([0.05,1],"s")

Wperfg = freq(Wperf,omega)
Wactg = freq(Wact,omega)
Wnoiseg = conpdm(Wnoise,omega)
Wrefg = freq(Wref,omega)
g2 = ctrlplot(Wperfg,{logmagplot});
g2 = ctrlplot(Wactg,g2,{logmagplot,line style=3});
g2 = ctrlplot(Wnoiseg,g2,{logmagplot,line style=4});
g2 = ctrlplot(Wrefg,g2,{logmagplot,line style=5});
g2 = plot(g2,{title="Performance Weights",y min=0.001,...

legend=["tracking error";"actuator";...
"noise";"reference input"],!grid})?

Frequency

0.1 1 100.01 100

Ma
gn

itud
e

0.01

0.1

1

10

0.001

100

Performance Weights

tracking error

actuator

noise

reference input

Set up a weighted interconnection structure for unity gain negative feedback. This
includes the perturbation weight as well as those for the design performance objectives.
A scalar multiplier is factored out of the perturbation. This is done to give a more
interesting D-scale problem for this example.

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 117

nms = ["plant";"Wm";"Wperf";"Wact";"Wnoise";"Wref"]
inp = ["delt";"ref";"noise";"u"]
outp = ["100*Wm"; "Wperf"; "Wact"; "Wref-0.01*delt-plant-Wnoise"]
cnx = ["u"; "plant"; "Wref-0.01*delt-plant"; "u"; "noise"; "ref"]
p = sysic(nms,inp,outp,cnx,plant,Wm,Wperf,Wact,Wnoise,Wref)

The interconnection structure, p, is illustrated in Figure 3.11.

100*Wm 0.01

Wperf

Wact

plant

Wref

Wnoise

l+ � l+

l+
�

t t

t

�

�
��

?
�

@
@@

��

���

?

�

�

6

��

�

��

delt

ref

noise

u

p

Figure 3.11: Weighted interconnection structure, p

Perform an H infinity design.

nmeas = 1 # number of measurements
ncntrls = 1 # number of controls
gmin = 0
gmax = 100
Kinf = hinfsyn(p,nmeas,ncntrls,[gmin;gmax])

G = starp(p,Kinf) # weighted closed loop system
Gg = freq(G,omega)
G11g = Gg(1,1)
G22g = Gg(2:3,2:3)
rs = max(svd(G11g)) # robust stability
np = max(svd(G22g)) # nominal performance

118 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

blk = [1,1; 2,2]
[rpbnds1,D1,Dinv1,Delta1,sens1] = mu(Gg,blk)

g3 = ctrlplot(np,{log}); # plot on a log-linear scale
g3 = ctrlplot(rs,g3,{log,line style=3});
g3 = ctrlplot(rpbnds1,g3,{log,line style=[4,5]});
g3 = plot(g3,{!grid,title="mu analysis",y lab="Magnitude",...

legend=["nominal perf.";"robust stab.";...
"robust perf.(upper)";"robust perf. (lower)"]})?

0.1 1 100.01 100

Ma
gn

itud
e

1

2

3

0

4

mu analysis

nominal perf.

robust stab.

robust perf.(upper)

robust perf. (lower)

Fit transfer functions to D1 & Dinv1 for a mu
synthesis iteration

[Ds,Dinvs] = musynfit(D1,blk,nmeas,ncntrls,sens1,{!plotweight})

The following illustrates the musynfit screen display after selecting a 2nd order fit and
then a 4th order fit.

3.7. STRUCTURED SINGULAR VALUE (µ) ANALYSIS AND SYNTHESIS 119

Frequency (Hz)

0.1 1 100.01 100

Ma
gn

itud
e

0.1

1

10

0.01

100

D scale fit, block: 1

Magnitude data

Previous fit, order: 2

New fit, order: 4

Apply the D scales to another H infinity design

Kmu = hinfsyn(Ds*p*Dinvs,nmeas,ncntrls,[0;10])

Close the loop around the weighted interconnection
structure.

Gmu = starp(p,Kmu) # weighted closed loop (2nd it.)
omega = logspace(0.01,100,40)
Gmug = freq(Gmu,omega)

blk = [1,1; 2,2]
[rpbnds2,D2,Dinv2,Delta2,sens2] = mu(Gmug,blk)

compare mu to the value from the previous iteration.

g4 = ctrlplot(rpbnds2(1,1),{log});
g4 = ctrlplot(rpbnds1(1,1),g4,{log,line style=4});
g4 = plot(g4,{title="mu analysis of robust performance",...

legend=["Kmu";"Kinf"],y lab="Magnitude",!grid})?

120 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

0.1 1 100.01 100

Ma
gn

itud
e

0.5

1

1.5

2

2.5

3

3.5

0

4

mu analysis of robust performance

Kmu

Kinf

3.7.4 Constructing Rational Perturbations

For simulation purposes it is useful to be able to construct a rational approximation to
the ∆ returned by the µ calculation. The approach is to choose a ∆ at a particular
frequency, for example the one where µ is at a maximum, and obtain a MIMO system
which has a frequency response (gain and phase) equal to ∆ at that frequency.

The function for this purpose is function mkpert. The syntax is given below.

pertsys = mkpert(Delta,blk,mubnds)

This function takes as arguments the variables Delta, blk, and mubnds. The meaning of
these is identical to the mu case. The frequency selected for the interpolation is that
where the lower bound (in mubnds) is maximum. Alternatively the user can use
keywords to specify a frequency at which to do the interpolation and specify the norm of
the resulting pertsys. pertsys will be an all-pass system.

Monte-Carlo simulation approaches require the ability to generate random perturbations
having the correct block structure. The function for this purpose is randpert and its
usage is illustrated below.

3.8. MODEL REDUCTION 121

pert = randpert(blk,{sys,sfreq,complex,pnorm})

The user can specify whether the perturbation is a dynamic system or matrix, and
whether it is real or complex valued, in addition to specifying the norm.

3.7.5 Block Structured Norm Calculations

It is possible to get an idea of the input/output combinations which are limiting the
robust stability or robust performance of a system by examining the elements of the
product, DMD−1 at the critical frequency. Large values indicate a potential problem in
the corresponding input/output pair. For systems with MIMO blocks this can be
simplified to looking at the block norm of the matrix. This is done by partitioning up
the matrix into blocks which correspond to the inputs and outputs of each block of ∆.
Each partition is then replaced by the maximum singular value of the partition. In the
case where all the ∆ blocks are 1 × 1 this reduces to the absolute value of the matrix. If
there is only one ∆ block this is equivalent to calculating the maximum singular value of
the matrix.

The Xµ function for this purpose is called blknorm and its syntax is illustrated below.

normM = blknorm(M,blk,p,{Frobenius})

The user has the option of selecting other p norms (1 ≤ p ≤ ∞) or the Frobenius norm.
The Euclidean norm is the most commonly used and is the default.

3.8 Model Reduction

The model reduction functions described here are often useful in obtaining a lower order
realization of a controller. µ-synthesis controllers for complicated systems are often of
high order. The controller order can often be significantly reduced with very little
degradation in the closed loop performance.

The user should be careful in reducing the order of an open-loop interconnection
structure before doing a design. Very small changes in the interconnection structure can
produce dramatic changes in the resulting closed loop system.

122 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

A greater range of model reduction functions is available in the Model Reduction
Module. Some of the functions described here are cross-licensed with that module.
Section 2.6 describes the theory behind these functions.

3.8.1 Truncation and Residualization

Truncation is provided by the truncate function (cross-licensed with the Model
Reduction Module). Residualization is performed with the Xµ function: sresidualize.
The user must specify the original system and the number of states to be retained. In
both cases the states in the upper left corner of the A matrix are retained.

The following example illustrates the use of these functions and gives an idea of their
error properties.

Create a five state system for reduction.

a = daug(-0.891334,[-1.20857,0.799042;-0.799042,-1.20857],...
-4.74685,-21.3013)

b = [0.0262569;-0.189601;-0.113729;0.211465;-0.538239]
c = [0.120725,-0.336942,0.397198,-0.700524,-1.02235]
d = 0
sys1 = system(a,b,c,d)

Reduce to a 3 state system by residualization
and truncation.

sysout1 = sresidualize(sys1,3)
sysout2 = truncate(sys1,3)

fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)
sysout1g = freq(sysout1,fHz)
sysout2g = freq(sysout2,fHz)
residerror = sys1g - sysout1g
truncerror = sys1g - sysout2g

g1 = ctrlplot(sys1g,{logmagplot});
g1 = ctrlplot(sysout1g,g1,{logmagplot,line style=2});

3.8. MODEL REDUCTION 123

g1 = ctrlplot(sysout2g,g1,{logmagplot,line style=4});
g1 = ctrlplot(residerror,g1,{logmagplot,line style=5});
g1 = ctrlplot(truncerror,g1,{logmagplot,line style=6});
g1 = plot(g1,{!grid,legend=["original system";...

"residualized system";"truncated system";...
"residualization error";"truncation error"]})?

Frequency

0.1 1 100.01 100

Ma
gn

itud
e

0.0001

0.001

0.01

1e-05

0.1

original system

residualized system

truncated system

residualization error

truncation error

3.8.2 Balanced Realizations

The function balmoore (cross-licensed from the Model Reduction Module) produces a
balanced realization and optionally truncates it. The can be used to obtain a balanced
realization and the Hankel singular values without necessarily truncating the system.
The following illustrates the use of the function using the same system as in the
truncate and sresidualize example.

Balanced truncation.

[sysout3,hsv] = balmoore(sys1,{nsr=3})
sysout3g = freq(sysout3,fHz)
balerr = sys1g - sysout3g

124 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Displaying the Hankel singular values shows which
states are close to unobservable and uncontrollable.

hsv?
hsv (a column vector) =

0.0741834
0.0726887
0.0264105
0.000146401
2.7699e-07

Compare to the errors from the previous example.

g2 = ctrlplot(sys1g,{logmagplot});
g2 = ctrlplot(sysout3g,g2,{logmagplot,line style=2});
g2 = ctrlplot(balerr,g2,{logmagplot,line style=4});
g2 = ctrlplot(residerror,g2,{logmagplot,line style=5});
g2 = ctrlplot(truncerror,g2,{logmagplot,line style=6});
g2 = plot(g2,{!grid,legend=["original system";...

"balanced truncation";"error: balmoore";...
"error: sresidualize";"error: truncate"]})?

Frequency

0.1 1 100.01 100

Ma
gn

itud
e

1e-05

0.0001

0.001

0.01

1e-06

0.1

original system

balanced truncation

error: balmoore

error: sresidualize

error: truncate

3.8. MODEL REDUCTION 125

3.8.3 Hankel Singular Value Approximation

The function ophank (also cross-licensed from the Model Reduction Module) is used to
perform optimal Hankel norm approximation. Recall from Section 2.6.3 that there is an
astable system achieving the lower bound. The unstable part of this system is returned
as the second argument.

The following applies the Hankel norm approximation technique to the previous
example. The unstable part of the optimal approximation is sysout4u and the astable
system, sysout4 + sysout4u would achieve the lower bound for the approximation
error. The Hankel singular values can also be obtained by this function.

Optimal Hankel singular value approximation

[sysout4,sysout4u,hsv] = ophank(sys1,{nsr=3})
sysout4g = freq(sysout4,fHz)
hankerr = sys1g - sysout4g

Compare to the errors from the previous example.

g3 = ctrlplot(sys1g,{logmagplot});
g3 = ctrlplot(sysout4g,g3,{logmagplot,line style=2});
g3 = ctrlplot(hankerr,g3,{logmagplot,line style=6});
g3 = ctrlplot(balerr,g3,{logmagplot,line style=4});
g3 = ctrlplot(residerror,g3,{logmagplot,line style=5});
g3 = plot(g3,{!grid,legend=["original system";...

"Hankel norm approximation";"error: ophank";...
"error: balmoore";"error: sresidualize"]})?

126 CHAPTER 3. FUNCTIONAL DESCRIPTION OF Xµ

Frequency

0.1 1 100.01 100

Ma
gn

itud
e

1e-05

0.0001

0.001

0.01

1e-06

0.1

original system

Hankel norm approximation

error: ophank

error: balmoore

error: sresidualize

Chapter 4

Demonstration Examples

4.1 The Himat Example

The following demo can be run by executing the following Xmath command:

execute file = "$XMATH/demos/xMu/himatdemo"

4.1.1 Problem Description

The Himat is a small scale remotely piloted aircraft built to investigate high
maneuverability fighter aircraft design. The vehicle was flight tested in the late 1970s.
The example studied here considers control of only the longitudinal dynamics. These are
taken to be uncoupled from the lateral-direction dynamics. The nominal model and
control objectives are described by Safonov et al. [82]. Further details can be found in
the work by Hartman et al. [83] and Merkel et al. [84]. The vehicle is currently attached
to the outside wall of the Museum of Science in Los Angeles.

A four state rigid body model describes the dynamics. The states can be assigned the
following physical meanings,

127

128 CHAPTER 4. DEMONSTRATION EXAMPLES

δv Perturbations along the velocity vector.

α Angle of attack. I.e. angle between the velocity vector and the aircraft’s longitudinal
axis.

q Rate-of-change of aircraft attitude angle.

θ Aircraft attitude angle.

Control can be exerted via the elevon and canard, denoted by δe and δc respectively.
The angle of attack (α) and attitude angle (θ) are available as direct measurements.

A weighted output disturbance rejection problem will be considered. This problem also
encompasses other maneuvering objectives. The closed-loop perturbation model of the
vehicle is illustrated in Figure 4.1.

Wp Himat

Wdel

�1 K

u uk+ k+��

-

�

?

�

?

-

�

6

6

�
e1

e2

�

�
w1

w2

�

dist pertin

Figure 4.1: Himat open-loop perturbation model

Note that Wp, Wdel, Himat and K are each two-input, two-output systems. Similarly,
the inputs dist and pertin are two element vector signals. The desired result is the
four-input, four-output system, denoted by clp, and shown in Figure 4.2. This is used in
the design example given below.

4.1.2 State-space Model of Himat

The state space description of the Himat plane is given below. The states of the plant
model are: forward speed (v), angle-of-attack (α), pitch rate (q) and pitch angle (θ).

4.1. THE HIMAT EXAMPLE 129

clp

�

�

�

�

�
w1

w2

�

�
e1

e2

�
pertin

dist

Figure 4.2: Interconnection structure for the himat design example

The inputs are the elevon position and the canard position. The outputs that are to be
kept small are angle-of-attack (α) and pitch angle (θ).

The commands required to enter the state-space description are simply matrix
assignments for each of A, B, C and D. Note that the states, inputs and outputs are
named.

a = [-0.0226, -36.6000, -18.9000, -32.1000;...
0, -1.9000, 0.9830, 0;...

0.0123, -11.7000, -2.6300, 0;...
0, 0, 1.0000, 0]

b = [0, 0;...
-0.4140, 0;...
-77.8000, 22.4000;...

0, 0]

c = [0, 57.3000, 0, 0;...
0, 0, 0, 57.3000]

d = zeros(2,2)
himat = system(a,b,c,d)
comment himat "Himat vehicle state-space model"

states = ["forward speed";"angle-of-attack";"pitch rate";"pitch
angle"]
inputs = ["elevon";"canard"]
outputs = ["angle-of-attack";"pitch angle"]
himat = system(himat,{stateNames=states,inputNames=inputs,...

outputNames=outputs})?

130 CHAPTER 4. DEMONSTRATION EXAMPLES

himat (a state space system) =

A
-0.0226 -36.6 -18.9 -32.1
0 -1.9 0.983 0
0.0123 -11.7 -2.63 0
0 0 1 0

B
0 0

-0.414 0
-77.8 22.4

0 0

C
0 57.3 0 0
0 0 0 57.3

D
0 0
0 0

X0
0
0
0
0

State Names

forward speed angle-of-attack pitch rate pitch angle

Input Names

elevon
canard

Output Names

4.1. THE HIMAT EXAMPLE 131

angle-of-attack
pitch angle

System is continuous

4.1.3 Creating a Weighted Interconnection Structure for Design

The multiplicative input perturbation weight, Wdel, is constructed as a transfer function.
The weight is,

Wdel =
50(s + 100)
(s + 10000)

.

The output error weight, Wp, is created as,

Wp =
0.5(s + 3)
(s + 0.03)

.

This will be used as the performance weight. The appropriate commands are:

wdel = makepoly([50,5000])/makepoly([1,10000])

wp = makepoly([0.5,1.5])/makepoly([1,0.03])

These can be displayed on a frequency response plot for comparison purposes.

om1 = logspace(0.001,10000,100) # frequency vector (Hz)
wdelg = freq(wdel,om1)
comment wdelg "frequency response of wdel"

wpg = freq(wp,om1)
comment wpg "frequency response of wp"

gph1 = ctrlplot([wdelg,wpg],{logmagplot});
gph1 = plot(gph1,{title="Weights for HIMAT",!grid,...

legend=["Perturbation weight";"Performance weight"]})?

132 CHAPTER 4. DEMONSTRATION EXAMPLES

Frequency

0.01 0.1 1 10 100 10000.001 10000

Ma
gn

itud
e

1

10

0.1

100

Weights for HIMAT

Perturbation weight

Performance weight

The perturbation weight, Wdel, should actually be two-input, two-output. This is also
true of the performance weight, Wp. In this example, we are weighting each performance
channel identically. There is no requirement to do this and if we were more concerned
with errors in α than errors in θ, then the appropriate channel would have a large weight
applied. The function daug is used to make the 2×2 systems.

wdel = daug(wdel,wdel)
comment wdel "perturbation weight"
wp = daug(wp,wp)
comment wp "performance weight"

The design interconnection structure is now created with the sysic function. The result
is a state space system (8 states, 6 inputs and 6 outputs) called himat ic.

The first two inputs and outputs correspond to the multiplicative perturbation block.
Inputs and outputs 3 and 4 are the disturbance inputs & error outputs. The
measurements going to the controller appear on outputs 5 & 6. The control actuation is
put into the system on inputs 5 & 6.

4.1. THE HIMAT EXAMPLE 133

sysn = ["himat";"wdel";"wp"]
in = ["pert(2)";"dist(2)";"control(2)"]
out = ["wdel";"wp";"himat + dist"]
inter = ["control + pert"; "control"; "himat + dist"]

himat ic = sysic(sysn,in,out,inter,himat,wdel,wp)

comment himat ic "Himat design interconnection structure"

4.1.4 H∞ Design

The next step is to design an H∞ control law for Himat. The function hinfsyn designs
an H∞ control law based on the interconnection structure provided. hinfsyn requires
the design interconnection structure, number of measurements, number of controls and
single gamma or bisection bounds on γ.

Optional input arguments are the tolerance for terminating the γ iteration (tol), an
epsilon for Hamiltonian jω-axis eigenvalues (epr) and the epsilon for the Riccati
solution positive definite tests (epp). Two Riccati solution methods are provided:
eigenvalue or Schur (default) decomposition. hinfsyn returns the control law, k and the
gamma value achieved, gf1.

In this example, the system interconnection structure is himat ic, with 2 measurements,
2 controls, a γ lower bisection bound of 0.8, a γ upper bisection bound of 6, a tolerance
on the γ iteration of 0.05, and we’ll use the eigenvalue decomposition method to solve
the Riccati equations. The default values of epr (0.5*sqrt(eps)) and epp (1e-6) will be
used for the epsilon tests.

gamma bounds = [0.8;6.0]
nmeas = 2 # 2 measurements: attack angle & pitch
nctrls = 2 # 2 controls: elevon & canard

comment nmeas "number of controller measurements"
comment nctrls "number of controller outputs"

[k1,gf1] = hinfsyn(himat ic,nmeas,nctrls,gamma bounds,{tol=0.05})

Test bounds: 0.8000 < gamma <= 6.0000

134 CHAPTER 4. DEMONSTRATION EXAMPLES

gamma Hx eig X eig Hy eig Y eig nrho xy p/f
6.000 2.3e-02 5.6e-05 2.3e-02 0.0e+00 0.0626 p
3.400 2.3e-02 5.7e-05 2.3e-02 0.0e+00 0.2020 p
2.100 2.3e-02 5.9e-05 2.3e-02 0.0e+00 0.5798 p
1.450 2.3e-02 6.4e-05 2.3e-02 0.0e+00 1.4678 f
1.775 2.3e-02 6.1e-05 2.3e-02 0.0e+00 0.8652 p
1.613 2.3e-02 6.2e-05 2.3e-02 0.0e+00 1.1028 f
1.694 2.3e-02 6.1e-05 2.3e-02 0.0e+00 0.9725 p
1.653 2.3e-02 6.2e-05 2.3e-02 0.0e+00 1.0343 f

Gamma value achieved: 1.6938

comment k1 "controller: iteration 1"
comment gf1 "gamma value: iteration 1"

g1 = starp(himat ic,k1)
comment g1 "closed loop: iteration 1"

An H∞ control law has been designed which achieves an infinity norm of 1.6938 for the
interconnection structure provided. First, we will examine aspects of the controller that
was just designed, starting with the controller poles.

rifd(k1)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-2.2609e-02 0.0000e+00 2.2609e-02 1.0000
-3.0000e-02 0.0000e+00 3.0000e-02 1.0000
-3.0000e-02 0.0000e+00 3.0000e-02 1.0000
-1.3833e+01 0.0000e+00 1.3833e+01 1.0000
-9.8959e+01 0.0000e+00 9.8959e+01 1.0000
-1.4712e+02 9.6846e+01 1.7613e+02 0.8353
-1.4712e+02 -9.6846e+01 1.7613e+02 0.8353
-7.4256e+03 0.0000e+00 7.4256e+03 1.0000

4.1. THE HIMAT EXAMPLE 135

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-2.2516e-02 0.0000e+00 2.2516e-02 1.0000
-1.7226e+00 0.0000e+00 1.7226e+00 1.0000
-3.0272e+00 0.0000e+00 3.0272e+00 1.0000
-3.1034e+01 0.0000e+00 3.1034e+01 1.0000
-1.0000e+04 0.0000e+00 1.0000e+04 1.0000
-1.0000e+04 0.0000e+00 1.0000e+04 1.0000

Next, a magnitude plot of the frequency response of k1 is plotted to check that it looks
reasonable.

om2 = logspace(0.5,5000,25)
k1 g = freq(k1,om2)

comment k1 g "frequency response of k1"
comment om2 "frequency vector (Hz)"

gph2 = ctrlplot(k1 g,{bode});
gph2 = plot(gph2,{title="Controller: k1"})?

136 CHAPTER 4. DEMONSTRATION EXAMPLES

Frequency

1 10 100 10000.1 10000

M
ag

ni
tu

de

0.01

0.1

0.001

1

Controller: k1

Frequency

1 10 100 10000.1 10000

P
ha

se
 (

de
gr

ee
s)

-200

-100

0

100

-300

200

Onto the closed loop, first checking that it is stable by looking at the pole positions.

rifd(g1)

Poles:

real imaginary frequency damping
(rad/sec) ratio

4.1. THE HIMAT EXAMPLE 137

-2.2517e-02 0.0000e+00 2.2517e-02 1.0000
-2.2600e-02 0.0000e+00 2.2600e-02 1.0000
-3.0000e-02 0.0000e+00 3.0000e-02 1.0000
-3.0000e-02 0.0000e+00 3.0000e-02 1.0000
-2.9369e+00 0.0000e+00 2.9369e+00 1.0000
-2.9974e+00 0.0000e+00 2.9974e+00 1.0000
-4.8310e+00 0.0000e+00 4.8310e+00 1.0000
-6.5876e+00 0.0000e+00 6.5876e+00 1.0000
-5.8350e+01 -5.6049e+01 8.0909e+01 0.7212
-5.8350e+01 5.6049e+01 8.0909e+01 0.7212
-8.8792e+01 -4.2881e+01 9.8604e+01 0.9005
-8.8792e+01 4.2881e+01 9.8604e+01 0.9005
-9.9778e+01 0.0000e+00 9.9778e+01 1.0000
-7.4258e+03 0.0000e+00 7.4258e+03 1.0000
-1.0000e+04 0.0000e+00 1.0000e+04 1.0000
-1.0000e+04 0.0000e+00 1.0000e+04 1.0000

Zeros:

ans (a scalar) = 0

Now calculate a closed loop frequency response. This results in a 4x4 pdm: g1g

g1g=freq(g1,om2)
comment g1g "frequency response of g1"

The singular values of the closed loop system are calculated. The maximum of the
singular values over frequency is also calculated and compared to γ. As γ is a
guaranteed upper bound on the infinity norm, this value should be less.

g1gs = svd(g1g)
comment g1gs "closed loop singular value: iteration 1"
gph3 = ctrlplot(g1gs,{log});
gph3 = plot(gph3,{!grid,...

title="Singular value plot of the closed loop"})?

138 CHAPTER 4. DEMONSTRATION EXAMPLES

1 10 100 10000.1 10000

0.5

1

1.5

0

2

Singular value plot of the closed loop

4.1.5 µ Analysis of the H∞ Controller

The H∞ control law can be analyzed using µ-analysis. The closed-loop system, g1, has 4
inputs and 4 outputs. The first two inputs and outputs correspond to the uncertainty
block, and the second two correspond to the disturbance rejection block, or performance
block. Therefore, we can define the uncertainty inputs and outputs as a full 2×2
uncertainty block and the disturbance rejection inputs and outputs as a full 2×2
performance block. If the µ value for this control design is 1, then we are able to achieve
robust performance for the set of defined weights and this control design.

The mu function analyzes the robust performance and stability of the closed loop system.
The syntax of the function is:

[bnds,D,Dinv,Delta,sens] = mu(M,blk)

The variable M is usually the frequency response of the closed loop system. blk defines
the structure of the perturbations. In this example the block structure is two 2×2

4.1. THE HIMAT EXAMPLE 139

complex valued blocks.

The upper and lower bounds of the µ function are returned in bnds. Also returned are
the scaling matrices, D and Dinv, corresponding to the upper bound. The smallest
destabilizing perturbation at each frequency is returned as Delta. The variable sens is
the sensitivity of the upper bound to the D and Dinv scaling matrices. This will be
useful as a weighting function for fitting transfer functions to the D and Dinv scaling

blk = [2,2;2,2]
[bnds1,D1,D1inv,Delta1,sens1] = mu(g1g,blk)

comment blk "perturbation block structure"
comment bnds1 "mu bounds: iteration 1"
comment D1 "D scale: iteration 1"
comment D1inv "D inverse scale: iteration 1"
comment Delta1 "worst case perturbation: iteration 1"
comment sens1 "D scale sensitivity: iteration 1"

We plot the maximum singular value and µ on the same plot. The performance and
stability specifications have been achieved if µ is less than one at all frequencies.

gph4 = ctrlplot(g1gs(1,1),{log,line style=4});
gph4 = ctrlplot(bnds1,gph4,{log,line style=[1,3]});
gph4 = plot(gph4,{title="Max. singular value and mu comparison",...

legend=["max. singular value";"mu upper bound";...
"mu lower bound"],!grid})?

140 CHAPTER 4. DEMONSTRATION EXAMPLES

1 10 100 10000.1 10000

0.6

0.8

1

1.2

1.4

1.6

0.4

1.8

Max. singular value and mu comparison

max. singular value

mu upper bound

mu lower bound

Note that µ(g1g) is not less than one at all frequencies — we have not met the design
objectives. A D-K iteration will be used to lower µ and improve the robust performance
with respect to these objectives.

4.1.6 Fitting D-scales for the D-K Iteration

In some cases the H∞ controller is adequate for our purposes. It is not necessarily the
controller which gives the best robust performance for our system — it essentially
ignores the structure in the perturbations.

The D-K iteration procedure using the D and Dinv scaling matrices in the µ calculation
to set up an H∞ problem which will usually give better robust performance.

The first step is to pre and post multiply the interconnection, (himat ic in this case)
with D and Dinv. Two things need to be done first. The D and Dinv matrices produced
by µ are pdms and the interconnection is a state-space system. We must first fit transfer
functions to the D and Dinv magnitude data before we can do the multiplication.

4.1. THE HIMAT EXAMPLE 141

The second thing to note is that the interconnection structure has the additional control
inputs and measurement outputs. The D and Dinv systems must be augmented with
identities corresponding to these additional inputs and outputs.

The musynfit function performs both of these operations. The syntax of musynfit is:

[Dsys,Dinvsys] = musynfit(D,blk,nmeas,nctrls,sens,oldDsys)

The variables D and sens come directly from the mu function. The block structure is
specified by blk and nmeas and nctrls are the number of measurements and controls
respectively.

The outputs are the dynamic systems which approximate D and Dinv. The new scaled
H∞ problem can be set up with

new ic = Dsys * old ic * Dinvsys.

D-K iteration involves iterating between calculating and fitting D-scales and designing
controllers, K.

If there are N blocks in the µ problem set up, then the D scale matrices have N − 1
different transfer functions that require fitting. The Nth transfer function is taken to be
unity.

We recommend choosing a 3rd order transfer function for the fit. This increases the
number of states in the interconnection structure by 3*(size of block)*2. A different
order can be chosen — which will lead to a slightly different controller in the subsequent
analysis.

Note that g1g is also passed to musynfit. This will provide the user with a comparison
between the calculated upperbound and that based on the rational fit. This comparison
is useful in deciding between fits of differing orders.

[D1sys,D1invsys] = musynfit(D1,blk,nmeas,nctrls,sens1,g1g,{Hertz})

142 CHAPTER 4. DEMONSTRATION EXAMPLES

Frequency (Hz)

1 10 100 10000.1 10000

M
ag

ni
tu

de

0.1

1

0.01

10
D scale fit, block: 1

Magnitude data

Previous fit, order: 0

New fit, order: 3

Frequency (Hz)

1 10 100 10000.1 10000

M
ag

ni
tu

de

1

0.1

10
Upper bound comparison, block: 1

Data based bound

Previous fit bound, order: 0

New fit bound, order: 3

Frequency (Hz)

1 10 100 10000.1 10000

M
ag

ni
tu

de

0.1

1

0.01

10
D scale fit weight for block: 1

4.1. THE HIMAT EXAMPLE 143

comment D1sys "system approx. to D1"
comment D1invsys "system approx. to D1inv"

4.1.7 Design Iteration #2

The new D scales can be pre and post multiplied onto the orginal interconnection
structure.

himat ic2 = D1sys * himat ic * D1invsys
[,,nx] = size(himat ic2)
display "himat ic2 now has " + string(nx) + " states"
himat ic2 now has 20 states

comment himat ic2 "interconnection for iteration 2"

Note the increase in states due to the inclusion of the D scales. A new H∞ controller
can now be designed.

gamma bounds = [0.9,6.0]
[k2,g2,gf2] = hinfsyn(himat ic2,nmeas,nctrls,...

gamma bounds,{tol=0.05})
Test bounds: 0.9000 < gamma <= 1.7000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
1.700 2.3e-02 -1.1e-09 2.2e-02 -2.5e-27 0.3120 p
1.300 2.3e-02 -3.1e-12 2.2e-02 -1.4e-29 0.6390 p
1.100 2.3e-02 -1.2e-08 2.2e-02 -3.4e-22 1.1028 f
1.200 2.3e-02 2.2e-14 2.2e-02 -2.1e-15 0.8180 p
1.150 2.3e-02 -7.7e-10 2.2e-02 -1.1e-15 0.9423 p
1.125 2.3e-02 -1.9e-08 2.2e-02 -5.8e-31 1.0171 f

Gamma value achieved: 1.1500

comment k2 "controller: iteration 2"
comment gf2 "gamma value: iteration 2"

Note that we calculate the new closed loop using the original interconnection: himat ic.

144 CHAPTER 4. DEMONSTRATION EXAMPLES

g2 = starp(himat ic,k2)
comment g2 "closed loop: iteration 2"

[,,nx] = size(k2)
display "k2 now also has " + string(nx) + " states"
k2 now also has 20 states

This design probably resulted in a control law which achieved an infinity norm of
approximately 1.1 for the new interconnection structure.

k2 has been designed to reduce µ(g2). The singular values may actually get worse. We
will see that this is the case here.

The stability of g2 is examined with the function check. As used here, it will return a 1
if it is stable and a zero if not. A frequency response is then calculated.

check(g2,{stable})
ans (a scalar) = 1

g2g=freq(g2,om2)
comment g2g "g2 frequency response"

The µ analysis is repeated to assess the closed loop robust performance of the µ based
controller (k2). The command format is identical to the last time.

[bnds2,D2,D2inv,Delta2,sens2] = mu(g2g,blk)

gph6 = ctrlplot(bnds2,{log,line style=[1,4]});
gph6 = ctrlplot(bnds1,gph6,{log,line style=[3,5]});
gph6 = plot(gph6,{title="Robustness analysis for the g2 system",...

legend=["g2: mu upper bound";"g2: mu lower bound";...
"g1: mu upper bound";"g1: mu lower bound"],!grid})?

4.1. THE HIMAT EXAMPLE 145

1 10 100 10000.1 10000

0.6

0.8

1

1.2

1.4

1.6

0.4

1.8

Robustness analysis for the g2 system

g2: mu upper bound

g2: mu lower bound

g1: mu upper bound

g1: mu lower bound

comment bnds2 "mu bounds: iteration 2"
comment D2 "D scale: iteration 2"
comment D2inv "D inverse scale: iteration 2"
comment Delta2 "worst case perturbation: iteration 2"
comment sens2 "D scale sensitivity: iteration 2"

Here we have only done a single D-K iteration. We are now much closer to the
specifications although we still do not quite meet them. In practice several more
iterations could be run to further improve the µ design. The next iteration would use
the commands:

[D2sys,D2invsys] = musynfit(D2,blk,nmeas,nctrls,sens2,g2g)
himat ic3 = D2sys*himat ic*D2invsys
k3 = hinfsyn(himat ic3,,nmeas,nctrls,gamma bounds,tol=0.05)

and to analyze it we would use the commands:

146 CHAPTER 4. DEMONSTRATION EXAMPLES

g3 = starp(himat ic,k3)
g3g = freq(g3,omega)
[bnds3,D3,D3inv,Delta3,sens3] = mu(g3g,blk)

At this point we could do another iteration (to get k4) or perhaps run some simulations
to check out k3 more thoroughly.

4.1.8 Simulation Comparison with a Loopshaping Controller

A loopshaping design is performed and compared to the H∞ and µ designs. As the
loopshaping design procedure is relatively standard, only the final controller is given
here (klp).

a =[-5.8928e-02,-6.3295e+00,-1.0440e+00,...
-1.6190e-02, 1.8469e+00, 1.0405e-02;...

-1.0283e+00,-1.5776e+03,-1.1900e+03,...
-9.9924e+00, 1.7895e+01, 3.0329e+00;...

1.0440e+00, 1.0146e+03,-4.2005e+01,...
-1.0953e+00, 2.1755e+02, 9.9809e-01;...

1.3287e-02, 9.6897e+00,-5.9979e-01,...
-2.5448e-02, 1.3634e+01, 4.5286e-02;...

6.4800e+00, 4.0284e+01,-5.9317e+02,...
-1.5215e+01,-2.3726e+04,-8.1459e+01;...

1.3057e-02,-4.0389e+00,-1.2179e+00,...
-1.4332e-02,-5.3180e+01,-2.3590e-01]

b =[1.2425e+00, -6.0707e-02; ...
1.5602e+01, -6.9151e+01; ...

-1.0002e+01, 5.5826e-01; ...
-1.2752e-01, 1.1238e-01; ...
-6.9355e+01, -1.4693e+01; ...
-1.4459e-01 ,-1.2232e-01]

c = [3.5741e-01,7.9890e-01,2.8247e+00,...
8.7133e-02,-7.0893e+01,-1.7902e-01;...

1.1915e+00,7.0885e+01,9.6107e+00,...
1.4594e-01, 3.3669e-01,-6.1799e-02]

4.1. THE HIMAT EXAMPLE 147

d = zeros(2,2)
klp = system(a,b,c,d)
comment klp "loop shape controller"

We will compare the designs, with no error or uncertainty weights, for the nominal case
and with a perturbation block of ∆ = [0.1,0;0,-0.1] for the input multiplicative
perturbation.

The time response will be from 0 to 2 seconds with a sample time of 0.01 seconds. We’ll
look at a unit step input into the first channel.

The unweighted closed loop system is now formed for each controller. The inputs and
outputs to the perturbations are closed around a ∆ = 0 perturbation initially. This is
equivalent to selecting the nominal inputs and outputs.

sysnames = ["himat";"wdel"]
invars = ["pert(2)"; "dist(2)"; "control(2)"]
outvars = ["wdel"; "himat+dist"; "himat+dist"]
connections = ["control + pert";"control"]
gsim = sysic(sysnames,invars,outvars,connections,himat,wdel)

comment gsim "unweighted interconnection"

gsim mu = starp(gsim,k2)
gsim hinf = starp(gsim,k1)
gsim lp = starp(gsim,klp)

comment gsim mu "closed loop system: mu ctrl"
comment gsim hinf "closed loop system: hinf ctrl"
comment gsim lp "closed loop system: klp ctrl"

The nominal systems are studied first.

gsim mu nom = gsim mu(3:4,3:4)
gsim hinf nom = gsim hinf(3:4,3:4)
gsim lp nom = gsim lp(3:4,3:4)

148 CHAPTER 4. DEMONSTRATION EXAMPLES

comment gsim mu nom "nominal closed loop sys: mu ctrl"
comment gsim hinf nom "nominal closed loop sys: hinf ctrl"
comment gsim lp nom "nominal closed loop sys: klp ctrl"

A step disturbance is introduced into the first channel.

time = 0:2:0.01
u = gstep(time) # a unit step is the default
u = [u;0*u] # put zero into the other channel

comment u "simulation input"

y mu nom = gsim mu nom*u
y hinf nom = gsim hinf nom*u
y lp nom = gsim lp nom*u

comment y mu nom "nominal response: mu ctrl"
comment y hinf nom "nominal response: hinf ctrl"
comment y lp nom "nominal response: klp ctrl"

All controllers perform well on the nominal system. This can be seen by plotting the
time histories of each.

gph7 = plot(y mu nom,{rows=3,row=1,grid,...
title="Kmu step dist. response (nominal)",...
x lab="time",y max=1.5,y min=-1});

gph7 = plot(y hinf nom,gph7,{row=2,grid,...
title="Kinf step dist. response (nominal)",...
x lab="time",y max=1.5,y min=-1});

gph7 = plot(y lp nom,gph7,{row=3,grid,...
title="Klp step dist. response: (nominal)",...
x lab="time",y max=1.5,y min=-1})?

4.1. THE HIMAT EXAMPLE 149

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Kmu step dist. response (nominal)

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Kinf step dist. response (nominal)

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Klp step dist. response: (nominal)

150 CHAPTER 4. DEMONSTRATION EXAMPLES

The loopshaping design gives a decoupled response. Both the H∞ and µ designs trade
decoupling for speed of response and, as we shall see, robustness with respect to
perturbations.

The simulation is repeated with a perturbation of size 0.1. Note that this is only 10% of
the size perturbation that we were analyzing and designing for in the above.

delta = [.1,0;0,-0.1]

comment delta "example perturbation"

gsim mu pert = starp(delta,gsim mu)
gsim hinf pert = starp(delta,gsim hinf)
gsim lp pert = starp(delta,gsim lp)

comment gsim mu pert "perturbed closed loop sys: mu ctrl"
comment gsim hinf pert "perturbed closed loop sys: hinf ctrl"
comment gsim lp pert "perturbed closed loop sys: klp ctrl"

y mu pert = gsim mu pert*u
y hinf pert = gsim hinf pert*u
y lp pert = gsim lp pert*u

comment y mu pert "perturbed response: mu ctrl"
comment y hinf pert "perturbed response: hinf ctrl"
comment y lp pert "perturbed response: klp ctrl"

The loop shaping controller performs poorly on the perturbed system. Again the time
response of each system is plotted.

gph8 = plot(y mu pert,{rows=3,row=1,grid,...
title="Kmu step dist. response (perturbed)",...
x lab="time",y max=1.5,y min=-1});

gph8 = plot(y hinf pert,gph8,{row=2,grid,...
title="Kinf step dist. response (perturbed)",...
x lab="time",y max=1.5,y min=-1});

gph8 = plot(y lp pert,gph8,{row=3,grid,...
title="Klp step dist. response: (perturbed)",...
x lab="time",y max=1.5,y min=-1})?

4.1. THE HIMAT EXAMPLE 151

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Kmu step dist. response (perturbed)

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Kinf step dist. response (perturbed)

time

0.5 1 1.50 2

-0.5

0

0.5

1

-1

1.5

Klp step dist. response: (perturbed)

152 CHAPTER 4. DEMONSTRATION EXAMPLES

The loopshaping controller had good nominal performance and very poor robust
performance. This was illustrated with a relatively small perturbation. The difference
between the µ and H∞ controllers was small in both the nominal and perturbed cases.
This may not always be the case for several reasons.

Only a single D-K iteration was performed here. Further iterations would further
improve the performance of the µ controller.

The perturbation chosen for the above simulation was not the worst case one. Note that
here, each of the three closed loop systems will have a different worst case perturbation.
To find these, perform a µ calculation on each closed loop system and use mkpert to
construct the appropriate perturbations.

The theoretical measure of performance is the H∞ norm of the closed loop transfer
function. When assessing different controllers by simulation we are applying additional,
unformalized performance measures.

In this case, the performance and perturbation channels were about equally scaled. The
resulting D-scales were within an order of magnitude of unity. Choosing a different set
of units for α and/or θ would change the H∞ norm of the result without changing µ. A
poor choice of engineering units could therefore lead to a larger difference between the
H∞ controller and the µ controller.

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 153

4.2 A Simple Flexible Structure Example

The demonstration script, jplphBdemo.ms, runs through a D-K iteration design for a
simple flexible structure problem.

The following demo can be run by executing the following Xmath command:

execute file = "$XMATH/demos/xMu/jplphBdemo"

where $XMATH is the path to your Xmath source location.

The problem comes from an experiment in the NASA Control Structures Interaction
(CSI) program and is located at the Jet Propulsion Laboratory. A more complete
description is given by Spanos et al. [85, 86, 87].

The problem involves controlling the length of a laser path which reflects off of a series
of mirrors mounted on a flexible structure. One measurement is available to the
controller: the pathlength. There are two actuators, a voice coil and a piezo-electric,
each driving a mirror in the path. These actuators are effectively in parallel at the same
point. They differ significantly in their characteristics and uncertainty descriptions.

This is a relatively simple problem and the user should be able to achieve similar results
through standard classical techniques. The code given here serves as a suitable template
for user written design scripts. It should be noted that a large number of frequency
points are used in this design — perhaps more than necessary — and this significantly
slows down the calculation of µ.

4.2.1 The Control Design Problem

The optical configuration is illustrated schematically in Figure 4.3. The laser system
consists of a laser and optical interferometer. It is mounted on a fixed optical bench.
The laser is directed to the actuated mirrors mounted on the flexible structure. The
path continues back to the optical bench where it hits a target mirror and reflects back
through the structure mirrors to the interferometer. The interferometer gives a
measurement of the optical pathlength to an accuracy of 2.5 nm.

Vibrations in the flexible structure affect the optical pathlength and the objective is to
maintain a constant pathlength in the presence of such vibrations. Complicating the

154 CHAPTER 4. DEMONSTRATION EXAMPLES

piezo

laser system

X
X
X
X
X
X
X
XX
�

�
�

�
�

�
�

��

� -

� -

Mounted on
exible structure
Mounted on �xed
optical bench

target
mirror

laser path

voice
coil

Figure 4.3: Schematic diagram of the JPL Phase B optical testbed design problem

problem is the fact that the voice-coil mirror assembly has significant mass and its
movement excites a mode in the structure. An identically driven counterbalance
effectively makes the piezo-electric actuator reactionless.

The closed loop design problem is illustrated in Figure 4.4.

voice coil

piezo

K

l+ l+ l+t ��

�

?

�

6

�

?

�

�

disturbancenoise

pathlength

Figure 4.4: JPL Phase B closed loop optical control configuration

We now construct a model of the voice-coil mirror actuator, vcmodel. This model has
been obtained from identification experiments. Note that it has an oscillatory pole pair
at a frequency very close to an oscillatory zero pair.

vcmodel1 = makepoly([1,.056309,1162.8],"s")/...
makepoly([1,.78756,1189.1],"s")

vcmodel2 = -252861.0/makepoly([1,1.0936,19.673],"s")
vcmodel = vcmodel1*vcmodel2
delete vcmodel1 vcmodel2
size(vcmodel)?
ans (a row vector) = 1 1 4

In the frequency range of interest the piezo mirror driver can nominally be modeled as a

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 155

static gain. We will include some dynamic uncertainty in the actual design.

piezo = 1

4.2.2 Creating the Weighted Design Interconnection Structure

The weighted, open-loop design interconnection structure is illustrated in Figure 4.5.
For clarity, the two perturbations, ∆1 and ∆2, have been shown inside the structure. We
have included perturbation models for both the actuators, involving the weights
Wavoice, Wmvoice and Wmpiezo.

In addition there is an error performance weight, Wperf, and two actuator penalties,
Wactv and Wactp. The relative sizes of the noise and disturbance inputs are specified by
the weights Wnoise and Wdist respectively.

Wperf

Wnoise

�2

�1

Wmpiezo

piezo

Wactp

Wmvoice

Wavoice

vcmodel

Wactv

Wdist

l+ l+ l+ l+

l+

s s s s

ss

��

��

?

?

��

�

6

�

?

����

�

?

?

�

��

�

?

�

6

6

e(1)

e(2)

e(3)

y

noise
w(2)

dist
w(1)

u(1)

u(2)

Figure 4.5: Weighted open-loop interconnection structure for the JPL Phase B optical
design problem

The voice coil additive weight, Wavoice, is simply a constant. Because the nominal voice
coil model rolls off at 40db/decade this weight indicates significant gain and phase
uncertainty for the frequencies where |Wavoice| > |vcmodel|.

Wavoice = 1

156 CHAPTER 4. DEMONSTRATION EXAMPLES

The additive weight clearly provides for significant high frequency uncertainty. A
multiplicative weight models the low frequency uncertainty. The value selected is
somewhat arbitrary and can be considered as a tunable design weight.

Wmvoice = 0.1

A multiplicative perturbation is used to model uncertainty in the piezo driver.
Experimental observations suggest a 5% deviation from nominal across the frequency
range of interest.

Wmpiezo = 0.05

Wdist is a weight for disturbances on the flexible structure. The magnitude of this has
been estimated by comparing experimental disturbance responses to the voice coil
system response. This weight can also be considered as a variable in the design problem.
Increasing the weight will place more emphasis on disturbance rejection in the final
design.

Wdist = 0.01

The noise weight, Wnoise is selected based on what is necessary to achieve a final
resolution of 10nm.

Wnoise = 0.005

The performance weight, Wperf is used to specify system performance up to 80 Hz. We
use a 2nd order Butterworth filter to roll off at frequencies beyond 80 Hz.

Wperf = butterworth(2,{Fc=80,dT=0})

There are actuator penalties for the piezo driver, Wactp, and the voice coil driver, Wactv.
The piezo seems to have usable bandwidth out to about 400 Hz. We use a first order roll
up, starting at 100 Hz. to penalize higher frequency actuation. The piezo penalty is set
at about 200 times greater than the voice coil penalty. This is because the piezo
actuator will saturate at 30 micrometers and the voice coil saturates at 6 mm.

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 157

F = 100
Wactp = makepoly([1/(2*pi*F),1],"s")/...

makepoly([1/(200*pi*F),1],"s")
Wactp = Wactp*4

The lower frequency response of the voice-coil system means that the Wactv weight
should begin rolling up at around 10 Hz.

F = 10
Wactv = makepoly([1/(2*pi*F),1],"s")/...

makepoly([1/(200*pi*F),1],"s")
Wactv = Wactv*0.02

Both of these weights can be adjusted to trade between the relative responses from the
voice-coil and the piezo. This should be done after examining simulations, or
experimental closed loop data.

The weights are concatenated together for easier display.

weights = [Wperf;Wavoice;Wmvoice;Wmpiezo;Wdist;Wnoise;Wactp;Wactv]

We now construct the weighted design interconnection structure using sysic.

ssnames = ["vcmodel"; "Wavoice"; "Wmvoice"; "Wmpiezo";...
"Wdist"; "Wnoise"; "Wperf"; "Wactp"; "Wactv"; "piezo"]

inps = ["d1i"; "d2i"; "dist"; "noise"; "vact"; "pact"]

ops = ["Wavoice";"Wmvoice";"Wmpiezo";"Wperf";"Wactv";"Wactp";...
"d1i + vcmodel + d2i + piezo + Wnoise"]

cnx = ["Wdist + vact"; "Wdist + vact"; "vcmodel"; "piezo";...
"dist"; "noise"; "d1i + vcmodel + d2i + piezo + Wnoise";...
"pact"; "vact"; "pact"]

P = sysic(ssnames,inps,ops,cnx,vcmodel,Wavoice,Wmvoice,Wmpiezo,...

158 CHAPTER 4. DEMONSTRATION EXAMPLES

Wdist,Wnoise,Wperf,Wactp,Wactv,piezo)
size(P)?
ans (a row vector) = 7 6 8

Now select a frequency grid for calculating the frequency responses. Some additional
points are included near the oscillatory modes.

omega = logspace(1,1000,15)’
omega = sort([omega; [5.275:0.05:5.625]’; [4.5:0.25:6.5]’])’

Examine the frequency response of the open-loop system.

vcmodelg = freq(vcmodel,omega)
gph1 = ctrlplot(vcmodelg,bode);
gph1 = plot(gph1,{title="voice coil model",!grid})?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 159

Frequency

10 1001 1000

M
ag

ni
tu

de

0.01

0.1

1

10

100

1000

10000

0.001

100000

voice coil model

Frequency

10 1001 1000

P
ha

se
 (

de
gr

ee
s)

-20

0

20

40

60

80

-40

100

160 CHAPTER 4. DEMONSTRATION EXAMPLES

And examine the design weights.

weightsg = freq(weights,omega)
gph2 = ctrlplot(weightsg,{logmagplot});
gph2 = plot(gph2,legend=["Wperf";"Wavoice";"Wmvoice";...

"Wmpiezo";"Wdist";"Wnoise";"Wactp";"Wactv"],...
title="Design weights",!grid)?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 161

Frequency

10 1001 1000

M
ag

ni
tu

de

0.01

0.1

1

10

0.001

100

Design weights

Wperf

Wavoice

Wmvoice

Wmpiezo

Wdist

Wnoise

Wactp

Wactv

162 CHAPTER 4. DEMONSTRATION EXAMPLES

4.2.3 Design of an H∞ Controller

An H∞ design is now performed. Recall that we have one interferometer measurement
and two controller outputs.

nmeas = 1
ncon = 2
glimits = [0;20]
[Khinf,gamma] = hinfsyn(P,nmeas,ncon,glimits,{tol=0.25})
Test bounds: 0.0000 < gamma <= 20.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
20.000 2.8e-02 3.1e-07 2.8e-01 -6.5e-17 0.0007 p
10.000 2.8e-02 3.1e-07 2.8e-01 -4.5e-17 0.0026 p
5.000 2.8e-02 3.1e-07 2.8e-01 -1.7e-16 0.0109 p
2.500 2.8e-02 3.1e-07 2.8e-01 0.0e+00 0.0487 p
1.250 2.8e-02 3.1e-07 2.8e-01 -1.6e-16 0.4059 p
0.625 2.5e-07 ******* 2.8e-01 -2.2e-16 ******* f
0.938 2.8e-02 -1.9e+06 2.8e-01 -1.6e-16 1.7198 f
1.094 2.8e-02 3.1e-07 2.8e-01 -1.9e-16 1.0727 f
1.172 2.8e-02 3.1e-07 2.8e-01 0.0e+00 0.5933 p

Gamma value achieved: 1.1719

Now form the closed loop and check the pole positions. As expected, it is stable.

Ghinf = starp(P,Khinf)
rifd(Ghinf)
Poles:

real imaginary frequency damping
(rad/sec) ratio

-2.8248e-02 3.4100e+01 3.4100e+01 0.0008
-2.8248e-02 -3.4100e+01 3.4100e+01 0.0008
-2.7911e-01 3.4212e+01 3.4213e+01 0.0082
-2.7911e-01 -3.4212e+01 3.4213e+01 0.0082
-2.9727e+01 -3.0010e+01 4.2241e+01 0.7038
-2.9727e+01 3.0010e+01 4.2241e+01 0.7038

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 163

-3.5543e+02 -3.5543e+02 5.0265e+02 0.7071
-3.5543e+02 3.5543e+02 5.0265e+02 0.7071
-6.4598e+02 -3.3537e+01 6.4685e+02 0.9987
-6.4598e+02 3.3537e+01 6.4685e+02 0.9987
-3.8358e+02 -5.3777e+02 6.6055e+02 0.5807
-3.8358e+02 5.3777e+02 6.6055e+02 0.5807
-1.6934e+03 0.0000e+00 1.6934e+03 1.0000
-2.8107e+03 0.0000e+00 2.8107e+03 1.0000
-6.2832e+03 0.0000e+00 6.2832e+03 1.0000
-6.2832e+04 0.0000e+00 6.2832e+04 1.0000

Zeros:

We can also look at the controller poles. It turns out that our controller is stable.

rifd(Khinf)
Poles:

real imaginary frequency damping
(rad/sec) ratio

-2.8002e-02 3.4100e+01 3.4100e+01 0.0008
-2.8002e-02 -3.4100e+01 3.4100e+01 0.0008
-3.5543e+02 -3.5543e+02 5.0265e+02 0.7071
-3.5543e+02 3.5543e+02 5.0265e+02 0.7071
-6.4828e+02 0.0000e+00 6.4828e+02 1.0000
-1.1873e+03 -3.0188e+02 1.2251e+03 0.9692
-1.1873e+03 3.0188e+02 1.2251e+03 0.9692
-2.8870e+03 0.0000e+00 2.8870e+03 1.0000

Zeros:

We also look at a frequency response of the controller. Recall that it is single-input,
two-output.

Khinfg = freq(Khinf,omega);
gph3 = ctrlplot(Khinfg,{bode});
gph3 = plot(gph3,{title="Controller: Khinf"})?

164 CHAPTER 4. DEMONSTRATION EXAMPLES

Frequency

10 1001 1000

M
ag

ni
tu

de

0.001

0.01

0.1

0.0001

1

Controller: Khinf

Frequency

10 1001 1000

P
ha

se
 (

de
gr

ee
s)

-50

0

50

100

150

-100

200

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 165

4.2.4 Robustness Analysis

The block structure has two perturbation ∆ blocks and a “performance” block. The two
voice-coil perturbations are put into a single 1×2 block as they enter the system at the
same point. Note that this is not identical to two separate blocks — for example a
perturbation in which both blocks have magnitude one is now longer included. The
advantage of doing this is that it give one less block in the resulting analysis and design
problem. This makes the µ calculation easier (we now have three blocks and so the
upper bound is actually equal to µ) and gives one less D-scale to be approximated in the
D-K iteration.

blk = [1,2; 1,1; 2,3]

The frequency response of the closed loop system is calculated. The nominal
performance test simply involves checking the H∞ norm of the nominal closed loop
system. This is a maximum singular value test.

Ghinfg = freq(Ghinf,omega);
npbnds = norm(svd(Ghinfg(4:6,3:4)),inf)

Robust stability is a µ test as there are two pertubation blocks. Note that here we
calculate µ with respect to the G11 partition and use a block structure containing only
the perturbation blocks.

[rsbnds,Drs,Drsinv,Deltars,sensrs] = mu(Ghinfg(1:3,1:2),[1,2; 1,1])

Robust performance is a µ test on the entire G matrix.

[rpbnds,D,Dinv,Delta,sens] = mu(Ghinfg,blk)

These results are plotted. Note that µ tests give bounds and in this case the upper and
lower bounds are almost indistinguishable.

166 CHAPTER 4. DEMONSTRATION EXAMPLES

gph4 = ctrlplot(npbnds,{log,line style=4});
gph4 = ctrlplot(rsbnds,gph4,{log,line style=[3,5]});
gph4 = ctrlplot(rpbnds,gph4,{log,line style=[1,2]});
gph4 = plot(gph4,{!grid,legend=["Nom perf";"Rob stab (up bnd)";...

"Rob stab (lw bnd)"; "Rob perf (up bnd)";...
"Rob perf (lw bnd)"],title="mu analysis of Ghinf"})?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 167

0.5 1 1.50 2

-0.01

-0.005

0

0.005

0.01

-0.015

0.015

perturbed closed loop: vc actuator

Khinf

Kmu

168 CHAPTER 4. DEMONSTRATION EXAMPLES

4.2.5 D-K Iteration

We will now perform one D-K iteration to generate the controller Kmu. Significant
robustness and performance improvement is achieved with only one iteration.

Transfer functions are fit to the D-scales from the previous robust performance µ test.
Here we preselect an order of 2 for each D-scale. This has been found to give a
satisfactory result.

[Dsys,Dinvsys] = musynfit(D,blk,nmeas,ncon,sens,[],2)

Now a new weighted interconnection is formed by pre- and post-multiplying by the
D-scale approximations. A second H∞ design is performed to get Kmu.

Pd = Dsys*P*Dinvsys
glimits = [0;20]
Kmu = hinfsyn(Pd,nmeas,ncon,glimits,{tol=0.1,epr=1e-10,epp=1e-4})
Test bounds: 0.0000 < gamma <= 20.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
20.000 2.9e-02 3.5e-10 1.2e-01 -1.2e-15 0.0001 p
10.000 2.9e-02 3.3e-10 1.2e-01 -3.8e-16 0.0006 p
5.000 2.9e-02 3.7e-10 1.2e-01 -3.7e-16 0.0022 p
2.500 2.9e-02 3.1e-10 1.2e-01 -3.7e-16 0.0090 p
1.250 2.9e-02 3.6e-10 1.2e-01 -1.8e-15 0.0364 p
0.625 2.8e-02 3.4e-10 1.2e-01 -2.1e-16 0.1518 p
0.312 2.8e-02 3.8e-10 1.2e-01 -2.2e-29 0.7425 p
0.156 2.1e-02 -4.3e+06 1.5e-01 -2.2e-17 18.9961 f
0.234 2.6e-02 3.6e-10 1.3e-01 -2.3e-16 1.7666 f
0.273 2.7e-02 3.8e-10 1.2e-01 -9.8e-17 1.0735 f
0.293 2.7e-02 3.9e-10 1.2e-01 -1.9e-16 0.8828 p

Gamma value achieved: 0.2930

Note that this value of γ is significantly lower than even the µ value from the Ghinf
closed loop system. Again, both the controller and closed loop system are stable.

A frequency response of Kmu is calculated and plotted.

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 169

Kmug = freq(Kmu,omega)
gph5 = ctrlplot(Kmug,{bode});
gph5 = plot(gph5,{title="Controller: Kmu"})?

170 CHAPTER 4. DEMONSTRATION EXAMPLES

Frequency

10 1001 1000

M
ag

ni
tu

de

0.001

0.01

0.1

0.0001

1

Controller: Kmu

Frequency

10 1001 1000

P
ha

se
 (

de
gr

ee
s)

-50

0

50

100

150

-100

200

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 171

We now examine the robustness properties of the new closed loop system. We already
know that the robust performance test will be less than the γ value from the H∞
synthesis above (in this case 0.2930). The results are again displayed graphically.

Gmug = freq(Gmu,omega)
npbnds = norm(svd(Gmug(4:6,3:4)),inf)
[rsbnds,Drs,Drsinv,Deltars,sensrs] = mu(Gmug(1:3,1:2),[1,2; 1,1])
[rpbnds,D,Dinv,Delta,sens] = mu(Gmug,blk)

gph6 = ctrlplot(npbnds,{log,line style=4});
gph6 = ctrlplot(rsbnds,gph6,{log,line style=[3,5]});
gph6 = ctrlplot(rpbnds,gph6,{log,line style=[1,2]});
gph6 = plot(gph6,{!grid,legend=["Nom perf";"Rob stab (up bnd)";...

"Rob stab (lw bnd)"; "Rob perf (up bnd)";...
"Rob perf (lw bnd)"],title="mu analysis of Gmu"})?

172 CHAPTER 4. DEMONSTRATION EXAMPLES

10 1001 1000

0.05

0.1

0.15

0.2

0.25

0

0.3

mu analysis of Gmu

Nom perf

Rob stab (up bnd)

Rob stab (lw bnd)

Rob perf (up bnd)

Rob perf (lw bnd)

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 173

4.2.6 A Simulation Study

Now the two controllers (Khinf and Kmu) are studied by simulation. An unweighted
interconnection is set up with sysic and starp is used to close the loop for each
controller.

ssnames = ["vcmodel"; "Wavoice"; "Wmvoice"; "Wmpiezo"; "piezo"]
inps = ["d1i"; "d2i"; "dist"; "noise"; "vact"; "pact"]
ops = ["Wavoice"; "Wmvoice"; "Wmpiezo";...

"d1i + vcmodel + d2i + piezo + noise"; "vact"; "pact";...
"d1i + vcmodel + d2i + piezo + noise"]

cnx = ["dist + vact"; "dist + vact"; "vcmodel"; "piezo"; "pact"]

Pnom =
sysic(ssnames,inps,ops,cnx,vcmodel,Wavoice,Wmvoice,Wmpiezo,piezo)

Random inputs are created for the noise and structure disturbances. Both are normally
distributed. These are passed through their respective performance weights to give
signals of the appropriate size (and if necessary frequency content). Both signals are
plotted.

u1 = randpdm(400,1,1,{Dlast=2,regular,zeromean})
u2 = randpdm(400,1,1,{Dlast=2,regular,zeromean})
u = [Wdist*u1; Wnoise*u2]

gph7 = ctrlplot(u(1,1));
gph7 = plot(gph7,{title="Simulation: disturbance"})?

174 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

-0.004

-0.002

0

0.002

0.004

-0.006

0.006

Simulation: disturbance

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 175

gph8 = ctrlplot(u(2,1));
gph8 = plot(gph8,{title="Simulation: noise",...

y lab="micrometers"})?

176 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

m
ic

ro
m

et
er

s

-0.002

-0.001

0

0.001

0.002

-0.003

0.003

Simulation: noise

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 177

A nominal response is calculated by setting ∆ = 0. To get the open-loop simulation
model we close the unweighted interconnection structure with a controller equal to zero.

deltazero = zeros(2,3)
Kzero = zeros(2,1)
nomolp = starp(deltazero,Pnom)
nomolp = starp(nomolp,Kzero)
yolp = nomolp*u

gph9 = ctrlplot(yolp(1,1));
gph9 = plot(gph9,{title="open loop beam length",...

y lab="micrometers"})?

178 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

m
ic

ro
m

et
er

s

-5

0

5

-10

10

open loop beam length

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 179

Now we consider the closed-loop nominal response with Khinf and Kmu. The closed-loop
system happens to have a large number of high frequency poles which do not contribute
significantly to the response. They have the effect of forcing a very fine time
discretization in the simulation, resulting in a long calculation time. We remove all poles
of frequency greater than 100 rad/sec. by residualization. This is not intended as a
general procedure — in some situations the high frequency behavior will be significant.

nomclp = starp(deltazero,Pnom)
nomclphinf = starp(nomclp,Khinf)
nomclpmu = starp(nomclp,Kmu)

fmax = 100;
nlfpoles = sum(abs(poles(nomclphinf))<fmax)
str = "Residualizing closed loop system to " + ...

string(nlfpoles)+" states"
display(str)
Residualizing closed loop system to 6 states
nsysclphinf = modalstate(nomclphinf)
nsysclphinf = sresidualize(nsysclphinf,nlfpoles)

nlfpoles = sum(abs(poles(nomclpmu))<fmax)
nsysclpmu = modalstate(nomclpmu)
nsysclpmu = sresidualize(nsysclpmu,nlfpoles)

The closed-loop responses are calculated and plotted.

yclphinf = nsysclphinf*u
yclpmu = nsysclpmu*u

gph10 = ctrlplot(yclphinf(1,1));
gph10 = ctrlplot(yclpmu(1,1),gph10);
gph10 = plot(gph10,{legend=["Khinf";"Kmu"],...

title="closed loop beam length",...
y lab="micrometers"})?

180 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

m
ic

ro
m

et
er

s

-0.2

-0.1

0

0.1

0.2

0.3

-0.3

0.4

closed loop beam length

Khinf

Kmu

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 181

gph11 = ctrlplot(yclphinf(2,1));
gph11 = ctrlplot(yclpmu(2,1),gph11);
gph11 = plot(gph11,{legend=["Khinf";"Kmu"],...

title="closed loop: vc actuator"})?

182 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

-0.01

-0.005

0

0.005

0.01

-0.015

0.015

closed loop: vc actuator

Khinf

Kmu

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 183

gph12 = ctrlplot(yclphinf(3,1));
gph12 = ctrlplot(yclpmu(3,1),gph12);
gph12 = plot(gph12,{legend=["Khinf";"Kmu"],...

title="closed loop: piezo actuator"})?

184 CHAPTER 4. DEMONSTRATION EXAMPLES

0.5 1 1.50 2

-0.01

0

0.01

0.02

-0.02

0.03

closed loop: piezo actuator

Khinf

Kmu

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 185

Note that Kmu achieves better performance at the expense of greater actuator effort.

We will now repeat this simulation for a perturbed system. A bad ∆ is chosen and
scaled to have norm 0.5. This is obtained from destabilizing ∆ calculated for the µ lower
bound. An all-pass system is fitted to ∆ at one frequency to create a real-rational
perturbation. The frequency selected is that where µ is at its maximum. In this case we
choose the ∆ that comes from the robust stability µ test. This gives the perturbation
which comes closest to destabilizing the closed loop system. Using ∆ from the robust
performance test would allow us to create a perturbation which minimizes the robust
performance of the closed loop system.

Here we use the worst-case ∆ for Kmu. This is almost certainly not the worst-case ∆ for
Khinf. Again, the closed loop systems are residualized prior to calculating the responses.

deltabad = mkpert(Deltars,blk(1:2,1:2),rsbnds,{pnorm=0.5})

badclp = starp(deltabad,Pnom)
badclphinf = starp(badclp,Khinf)
badclpmu = starp(badclp,Kmu)

nlfpoles = sum(abs(poles(badclphinf))<fmax)
str = "Residualizing closed loop system to "+...

string(nlfpoles)+" states"
display(str)
Residualizing closed loop system to 6 states
nbclphinf = modalstate(badclphinf)
nbclphinf = sresidualize(nbclphinf,nlfpoles)

nlfpoles = sum(abs(poles(badclpmu))<fmax)
nbclpmu = modalstate(badclpmu)
nbclpmu = sresidualize(nbclpmu,nlfpoles)

The responses are calculated and plotted.

ybclphinf = nbclphinf*u
ybclpmu = nbclpmu*u

gph13 = ctrlplot(ybclphinf(1,1));

186 CHAPTER 4. DEMONSTRATION EXAMPLES

gph13 = ctrlplot(ybclpmu(1,1),gph13);
gph13 = plot(gph13,{legend=["Khinf";"Kmu"],...

title="perturbed closed loop beam length",...
y lab="micrometers"})?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 187

Frequency

10 1001 1000

M
ag

ni
tu

de

0.001

0.01

0.1

0.0001

1

Controller: Khinf

Frequency

10 1001 1000

P
ha

se
 (

de
gr

ee
s)

-50

0

50

100

150

-100

200

188 CHAPTER 4. DEMONSTRATION EXAMPLES

gph14 = ctrlplot(ybclphinf(2,1));
gph14 = ctrlplot(ybclpmu(2,1),gph14);
gph14 = plot(gph14,{legend=["Khinf";"Kmu"],...

title="perturbed closed loop: vc actuator"})?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 189

0.5 1 1.50 2

-0.01

-0.005

0

0.005

0.01

-0.015

0.015

perturbed closed loop: vc actuator

Khinf

Kmu

190 CHAPTER 4. DEMONSTRATION EXAMPLES

gph15 = ctrlplot(ybclphinf(3,1));
gph15 = ctrlplot(ybclpmu(3,1),gph15);
gph15 = plot(gph15,{legend=["Khinf";"Kmu"],...

title="perturbed closed loop: piezo actuator"})?

4.2. A SIMPLE FLEXIBLE STRUCTURE EXAMPLE 191

0.5 1 1.50 2

-0.02

-0.01

0

0.01

0.02

-0.03

0.03

perturbed closed loop: piezo actuator

Khinf

Kmu

Bibliography

[1] J. C. Doyle, “Lecture notes on advances in multivariable control.” ONR/Honeywell
Workshop, Minneapolis, MN., 1984.

[2] J. Doyle, “Structured uncertainty in control system design,” in Proc. IEEE Control
Decision Conf., pp. 260–265, 1985.

[3] A. K. Packard, What’s new with µ: Structured Uncertainty in Multivariable
Control. PhD thesis, University of California, Berkeley, 1988.

[4] R. S. Smith, Model Validation for Uncertain Systems. PhD thesis, California
Institute of Technology, 1990.

[5] J. Doyle and G. Stein, “Multivariable feedback design: Concepts for a
classical/modern synthesis,” IEEE Trans. Auto. Control, vol. AC-26, pp. 4–16, Feb.
1981.

[6] M. Morari and E. Zafiriou, Robust Process Control. New Jersey: Prentice-Hall,
1989.

[7] The MathWorks, Inc., Natick, MA, µ-Analysis and Synthesis Toolbox (µ-Tools),
1991.

[8] J. Doyle, K. Lenz, and A. K. Packard, “Design examples using µ synthesis: Space
shuttle lateral axis FCS during reentry,” in Proc. IEEE Control Decision Conf.,
pp. 2218–2223, dec 1986.

[9] G. J. Balas, Robust Control of Flexible Structures, Theory and Experiment. PhD
thesis, California Institute of Technology, 1990.

[10] G. J. Balas and J. C. Doyle, “Identification of flexible structures for robust
control,” IEEE Control Sys. Magazine, vol. 10, pp. 51–58, June 1990.

193

194 BIBLIOGRAPHY

[11] G. J. Balas and J. C. Doyle, “Robust control of flexible modes in the controller
crossover region,” in Proc. Amer. Control Conf., 1989.

[12] G. J. Balas, A. K. Packard, and J. Harduvel, “Application of µ-synthesis techniques
to momentum management and attitude control of the Space Station,” in AIAA
Guidance, Navigation and Cont. Conf., 1991.

[13] R. S. Smith, C.-C. Chu, and J. L. Fanson, “The design of H∞ controllers for an
experimental non-collocated flexible structure problem,” IEEE Trans. Control Syst.
Tech., 1993. in press.

[14] J. Fanson, C.-C. Chu, B. Lurie, and R. Smith, “Damping and structural control of
the JPL phase 0 testbed structure,” J. Intell. Material Sys. & Struct., vol. 2,
pp. 281–300, July 1991.

[15] R. S. Smith, J. Doyle, M. Morari, and A. Skjellum, “A case study using µ:
Laboratory process control problem,” in Proc. Int. Fed. Auto. Control, vol. 8,
pp. 403–415, 1987.

[16] R. S. Smith and J. Doyle, “The two tank experiment: A benchmark control
problem,” in Proc. Amer. Control Conf., vol. 3, pp. 403–415, 1988.

[17] S. Skogestad, M. Morari, and J. C. Doyle, “Robust control of ill-conditioned plants:
High-purity distillation,” IEEE Trans. Auto. Control, vol. 33, pp. 1092–1105,
December 1988.

[18] S. Skogestad, “Correction to “Robust control of ill-conditioned plants: High purity
distillation”,” IEEE Trans. Auto. Control, vol. 34, p. 672, June 1989.

[19] J. Doyle and A. K. Packard, “Uncertain multivariable systems from a state space
perspective,” in Proc. Amer. Control Conf., vol. 3, pp. 2147–2152, 1987.

[20] A. K. Packard and J. C. Doyle, “The complex structured singular value,”
Automatica, vol. 29, no. 1, pp. 71–109, 1993.

[21] D. R. Hamburg and M. A. Shulman, “A closed loop A/F control model for internal
combustion engines,” Soc. Automotive Eng., no. 800826, 1980.

[22] B. G. Morton and R. M. McAfoos, “A mu-test for robustness analysis of a
real-parameter variation problem,” in Proc. Amer. Control Conf., 1985.

[23] J. Doyle and A. Packard, “Uncertain multivariable systems from a state space
perspective,” in Proc. Amer. Control Conf., pp. 2147–2152, IEEE, 1987.

BIBLIOGRAPHY 195

[24] D. L. Laughlin, K. G. Jordan, and M. Morari, “Internal model control and process
uncertainty: mapping uncertainty regions for SISO controller design,” Int. J. of
Control, vol. 44, no. 6, pp. 1675–1698, 1986.

[25] R. S. Smith and M. Dahleh, eds., The Modeling of Uncertainty in Control Systems:
Proceedings of the 1992 Santa Barbara Workshop. 391 pgs., Springer-Verlag, 1994.

[26] M. Gevers, “Connecting identification and robust control: A new challenge,” in
Proc. IFAC Symp. on Identification & System Parameter Estimation, vol. 1,
pp. 1–10, 1991.

[27] A. Helmicki, C. Jacobson, and C. Nett, “H∞ identification of stable lsi systems: A
scheme with direct application to controller design,” Proc. Amer. Control Conf.,
pp. 1428–1434, 1989.

[28] G. Gu and P. P. Khargonekar, “Linear and nonlinear algorithms for identification in
H∞ with error bounds,” in Proc. Amer. Control Conf., pp. 64–69, 1991.

[29] A. J. Helmicki, C. A. Jacobson, and C. N. Nett, “Control oriented system
identification: A worst-case/deterministic approach in H∞,” IEEE Trans. Auto.
Control, pp. 1163–1176, 1991.

[30] P. Mäkilä and J. Partington, “Robust approximation and identification in H∞,”
Proc. Amer. Control Conf., pp. 70–76, 1991.

[31] G. Gu and P. P. Khargonekar, “Linear and nonlinear algorithms for identification in
H∞ with error bounds,” in IEEE Trans. Auto. Control, vol. 37, pp. 953–963, 1992.

[32] G. Gu and P. P. Khargonekar, “A class of algorithms for identification in H∞,” in
Automatica, vol. 28, pp. 299–312, 1992.

[33] G. Gu, P. P. Khargonekar, and Y. Li, “Robust convergence of two-stage nonlinear
algorithms for identification in H∞,” in Syst. and Control Letters, vol. 18,
pp. 253–263, 1992.

[34] R. G. Hakvoort, “Worst-case system identification in H∞: error bounds and
optimal models,” in Selected Topics in Identification Modelling and Control, Delft
University Press, Vol. 5 1992.

[35] E.-W. Bai, “On-line H2, H∞ and pointwise uncertainty bound quantification in
identification of restricted complexity models,” in Proc. IEEE Control Decision
Conf., pp. 1719–1724, 1992.

[36] G. Goodwin and M. Salgado, “Quantification of uncertainty in estimation using an
embedding principle,” in Proc. Amer. Control Conf., 1989.

196 BIBLIOGRAPHY

[37] R. Kosut, M. Lau, and S. Boyd, “Parameter set identification of systems with
uncertain nonparametric dynamics and disturbances,” in Proc. IEEE Control
Decision Conf., vol. 6, pp. 3162–3167, 1990.

[38] G. Goodwin, B. Ninness, and M. Salgado, “Quantification of uncertainty in
estimation,” in Proc. Amer. Control Conf., pp. 2400–2405, 1990.

[39] B. M. Ninness and G. C. Goodwin, “Robust frequency response estimation
accounting for noise and undermodeling,” in Proc. Amer. Control Conf.,
pp. 2847–2851, 1992.

[40] R. S. Smith and J. Doyle, “Model invalidation — a connection between robust
control and identification,” in Proc. Amer. Control Conf., pp. 1435–1440, 1989.

[41] J. M. Krause, “Stability margins with real parameter uncertainty: Test data
implications,” in Proc. Amer. Control Conf., pp. 1441–1445, 1989.

[42] R. S. Smith and J. C. Doyle, “Model validation: A connection between robust
control and identification,” IEEE Trans. Auto. Control, vol. 37, pp. 942–952, July
1992.

[43] M. Newlin and R. S. Smith, “Model validation and generalized µ,” in Proc. IEEE
Control Decision Conf., pp. 1257–1258, 1991.

[44] K. Poolla, P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, “A time-domain
approach to model validation,” in Proc. Amer. Control Conf., pp. 313–317, 1992.

[45] R. S. Smith, “Model validation and parameter identification for systems in H∞ and
l1,” in Proc. Amer. Control Conf., pp. 2852–2856, 1992.

[46] T. Zhou and H. Kimura, “Input-output extrapolation-minimization theorem and its
application to model validation and robust identification,” in The Modeling of
Uncertainty in Control: Proceedings of the 1992 Santa Barbara Workshop (R. Smith
and M. Dahleh, eds.), pp. 127–137, Springer-Verlag, 1994.

[47] R. S. Smith, “Model validation for robust control: an experimental process control
application,” in Proc. of the 13th IFAC World Congress, vol. 9, pp. 61–64, July
1993.

[48] J. M. Krause and P. P. Khargonekar, “Parameter identification in the presence of
non-parametric dynamic uncertainty,” Automatica, vol. 26, pp. 113–124, 1990.

[49] R. Smith and J. Doyle, “Towards a methodology for robust parameter
identification,” in Proc. Amer. Control Conf., vol. 3, pp. 2394–2399, 1990.

BIBLIOGRAPHY 197

[50] J. M. Krause, P. P. Khargonekar, and G. Stein, “Robust parameter adjustment
with nonparametric weighted-ball-in-H∞ uncertainty,” IEEE Trans. Auto. Control,
vol. AC-35, pp. 225–229, 1990.

[51] R. S. Smith and J. C. Doyle, “Closed loop relay estimation of uncertainty bounds
for robust control models,” in Proc. of the 13th IFAC World Congress, vol. 9,
pp. 57–60, July 1993.

[52] R. J. Schrama and P. M. V. den Hof, “An iterative scheme for identification and
control design based on coprime factorizations,” in Proc. Amer. Control Conf.,
pp. 2842–2846, 1992.

[53] R. J. P. Schrama, “Accurate identification for control: the necessity of an iterative
scheme,” IEEE Trans. Auto. Control, vol. 37, pp. 991–994, July 1992.

[54] Z. Zang, R. R. Bitmead, and M. Gevers, “H2 iterative model refinement and control
robustness enhancement,” in Proc. IEEE Control Decision Conf., pp. 279–284, 1991.

[55] D. Bayard, Y. Yam, and E. Mettler, “A criterion for joint optimization of
identification and robust control,” IEEE Trans. Auto. Control, vol. 37, pp. 986–991,
July 1992.

[56] Z. Zang, R. R. Bitmead, and M. Gevers, “Disturbance rejection: on-line refinement
of controllers by closed loop modelling,” in Proc. Amer. Control Conf.,
pp. 2929–2833, 1992.

[57] B. A. Francis, A Course in H∞ Control Theory, vol. 88 of Lecture Notes in Control
and Information Sciences. Berlin: Springer-Verlag, 1987.

[58] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to
standard H2 and H∞ control problems,” IEEE Trans. Auto. Control, vol. AC-34,
pp. 831–847, 1989.

[59] K. Glover and J. Doyle, “State-space formulae for all stabilizing controllers that
satisfy an H∞ norm bound and relations to risk sensitivity,” Syst. and Control
Letters, vol. 11, pp. 167–172, Oct 1988.

[60] B. D. O. Anderson, “An algebraic solution to the spectral factorization problem,”
IEEE Trans. Auto. Control, vol. AC-12, pp. 410–414, 1967.

[61] J. C. Willems, “Least-squares stationary optimal control and the algebraic Riccati
equation,” IEEE Trans. Auto. Control, vol. AC-16, pp. 621–634, 1971.

[62] S. Boyd, V. Balakrishnan, and P. Kabamba, “On computing the h∞ norm of a
transfer matrix,” Math Contr. Signals, Syst., 1988.

198 BIBLIOGRAPHY

[63] A. J. Laub, “A Schur method for solving algebraic Riccati equations,” IEEE Trans.
Auto. Control, vol. AC-24, pp. 913–921, 1979.

[64] T. Pappas, A. J. Laub, and N. R. Sandell, “On the numerical solution of the
discrete-time algebraic Riccati equation,” IEEE Trans. Auto. Control, vol. AC-25,
pp. 631–641, 1980.

[65] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and software
for algebraic Riccati equations,” Proc. IEEE, vol. 72, pp. 1746–1754, 1984.

[66] A. J. Laub, “Invariant subspace methods for the numerical solution of Riccati
Equations,” in The Riccati Equation (S. Bittanti, A. J. Laub, and J. C. Willems,
eds.), pp. 163–196, Springer-Verlag, Berlin, 1991.

[67] G. Zames, “On the input-output stability of nonlinear time-varying feedback
systems, parts I and II.,” IEEE Trans. Auto. Control, vol. AC-11, pp. 228–238 and
465–476, 1966.

[68] J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE
Proceedings, Part D, vol. 133, pp. 45–56, Mar. 1982.

[69] M. K. H. Fan and A. L. Tits, “Characterization and efficient computation of the
structured singular value,” IEEE Trans. Auto. Control, vol. AC-31, pp. 734–743,
1986.

[70] M. K. H. Fan and A. L. Tits, “m-form numerical range and the computation of the
structured singular value,” IEEE Trans. Auto. Control, vol. AC-33, pp. 284–289,
1988.

[71] J. C. Doyle, A. K. Packard, P. M. Young, R. S. Smith, and M. P. Newlin, “The
structured singular value,” Tech. Rep. NASA-CR-4524, NASA, March 1992.

[72] M. G. Safonov and J. Doyle, “Minimizing conservativeness of robust singular
values,” in Multivariable Control (S. Tzafestas, ed.), New York: Reidel, 1984.

[73] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence of joint
parametric uncertainty and unmodeled dynamics,” in Proc. Amer. Control Conf.,
pp. 1195–1200, 1988.

[74] P. M. Young and J. C. Doyle, “Computation of the µ with real and complex
uncertainties,” in Proc. IEEE Control Decision Conf., pp. 1230–1235, 1990.

[75] P. M. Young, M. P. Newlin, and J. C. Doyle, “µ analysis with real parametric
uncertainty,” in Proc. IEEE Control Decision Conf., 1991.

BIBLIOGRAPHY 199

[76] M. Dahleh, A. Tesi, and A. Vicino, “Extremal properties for the parametric robust
performance problem,” Tech. Rep. UCSB-ME-91-4, Univ. California, Santa
Barbara, Mech. Eng., 1991. also submitted to 30th IEEE CDC.

[77] B. C. Moore, “Principal components analysis in linear systems: controllability,
observability and model reduction,” IEEE Trans. Auto. Control, vol. AC-26,
pp. 17–31, 1981.

[78] D. F. Enns, Model Reduction for Control System Design. PhD thesis, Stanford
University, 1984.

[79] K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems
and their L∞-error bounds,” Int. J. of Control, vol. 39, no. 6, pp. 1115–1193, 1984.

[80] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. New Jersey:
Prentice-Hall, 1975.

[81] J. L. Adcock, “Curve fitter for pole-zero analysis,” Hewlett-Packard Journal, p. 33,
January 1987.

[82] M. Safonov, A. Laub, and G. Hartman, “Feedback properties of multivariable
systems: The role and use of the return difference matrix,” IEEE Trans. Auto.
Control, vol. 26, no. 1, 1981.

[83] G. Hartman, M. Barrett, and C. Greene, “Control designs for an unstable vehicle,”
Tech. Rep. NAS 4–2578, NASA Dryden Flight Research Center, 1979.

[84] P. Merkel and R. Whitmoyer, “Development and evaluation of precision control
modes for fighter aircraft,” in AIAA Guidance, Navigation and Cont. Conf., 1976.
Paper No. 76–1950.

[85] J. T. Spanos and M. C. O’Neal, “Nanometer level optical control on the JPL
Phase B testbed,” in ADPA/AIAA/ASME/SPIE Conf. Active Mat. & Adapt.
Struct., Nov 1991.

[86] M. C. O’Neal and J. T. Spanos, “Optical pathlength control in the nanometer
regime on the JPL Phase B interferometer testbed,” in SPIE Int. Symp. Optical
Appl. Sci. & Eng., July 1991.

[87] J. T. Spanos and A. Kissil, “Modeling and identification of the JPL Phase B
testbed,” in ADPA/AIAA/ASME/SPIE Conf. Active Mat. & Adapt. Struct., Nov
1991.

Chapter 6

Function Reference

6.1 Xµ Functions

The following pages contain descriptions of the Xµ functions. These are also available
on-line via the help utility. Each description also gives an illustrative example of the
function’s use.

The functions are included in alphabetical order. For convenience they are
cross-referenced by typical use in the following list.

System building and interconnection

daug . 231

randsys . 329

starp . 355

sysic . 363

Variable display and graphics

201

202 CHAPTER 6. FUNCTION REFERENCE

rifd . 335

ctrlplot . 221

Time response calculations and pdm functions

gstep . 247

interp . 281

mergeseg . 285

randpdm . 323

sdtrsp . 339

trsp . 365

6.1. Xµ FUNCTIONS 203

Model reduction and state-space functions

balmoore . 205

modalstate . 293

ophank . 315

orderstate . 319

simtransform . 345

sresidualize . 351

truncate . 373

Controller synthesis

hinfsyn . 257

h2syn . 269

hinfnorm . 251

h2norm . 255

µ analysis and D-K iteration

blknorm . 209

mkpert . 289

mu . 295

musynfit . 299

spectrad . 349

randpert . 327

Transfer function fitting

fitsys . 239

mkphase . 291

204 CHAPTER 6. FUNCTION REFERENCE

Miscellaneous functions

conpdm . 213

consys . 215

csum . 217

delsubstr . 237

substr . 361

balmoore 205

balmoore

Syntax

[SysR,HSV,T] = balmoore(Sys,{nsr,bound})

Parameter List

Inputs: Sys Linear, stable, minimal state-space system
nsr (optional) If bound is used then a reduction will be per-

formed which meets an error bound specified by the value
in nsr, otherwise nsr is the order of the reduced system.
If nsr is not specified, the user will be prompted for its
value after the Hankel singular values are displayed.

Keywords: bound Boolean; meet an upper bound on the error (see nsr).

Outputs: SysR Internally balanced reduced order system; dynamic system
object.

HSV A column vector containing the Hankel singular values of
the system, Sys.

T Square matrix containing the balancing transformation,
i.e. xbal = Tx.

Description

Computes the balanced form of the system Sys which can be continuous or discrete,
then optionally truncates to the desired order, nsr, via B.C. Moore’s algorithm.

The user must ensure that the input system is minimal. Any initial state values or state
names associated with Sys are assigned to SysR. Input and Output names are also
maintained.

This function is cross-licensed from the Model Reduction Module.

206 Chapter 6. Function Reference

Reference

B.C. Moore, “Principal Component Analysis in Linear Systems: Controllability,
Observability and Model Reduction,” IEEE Trans. Auto. Ctrl., Vol. 26, No. 1, pp. 17–32,
Feb. 1981.

Example

Create a five state system for reduction.

a = daug(-0.891334,[-1.20857,0.799042;-0.799042,-1.20857],...
-4.74685,-21.3013)

b = [0.0262569;-0.189601;-0.113729;0.211465;-0.538239]
c = [0.120725,-0.336942,0.397198,-0.700524,-1.02235]
d = 0
sys1 = system(a,b,c,d)
fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)

Reduce to 3 states by balanced truncation.

[sysout1,hsv] = balmoore(sys1,{nsr=3})
sysout1g = freq(sysout1,fHz)
balerr = sys1g - sysout1g

Reduce to a 3 state system by residualization
for comparison purposes.

sysout2 = sresidualize(sys1,3)
sysout2g = freq(sysout2,fHz)
residerror = sys1g - sysout2g

gph1 = ctrlplot([sys1g,sysout1g,sysout2g,...
balerr,residerror],{logmagplot});

gph1 = plot(gph1,{!grid,legend=["original system";...
"reduced: balmoore";"reduced: sresidualize";...
"balmoore error";"sresidualize error"]})?

balmoore 207

See Also:

minimal, ophank.

blknorm 209

blknorm

Syntax

normM = blknorm(M,blk,p,Frobenius)

Parameter List

Inputs: M Matrix (or pdm).
blk Block structure. See mu section of the manual for a de-

scription of the syntax.
p Scalar valued. Specifies the Holder “p” norm to be used,

where 1 ≤ p ≤ inf. Optional. The default is p = 2.

Keywords: Frobenius The Frobenius norm is used.

Outputs: normM Matrix (or pdm) norms of each block of M.

Description

M is partitioned according the input/output partitions determined by blk. The
maximum singular value of each partition is calculated and normA is the matrix (pdm)
of norms.

For example, if p = 2 (the default case) and blk represents a single perturbation (with
compatible input/output dimensions) then normA is simply the maximum singular
value. If blk consists of entirely 1×1 perturbations, then normA is equal to abs(A).

Repeated scalar blocks are taken as full blocks. This neglects the assumed equivalences
between parts of Delta.

The Xmath function norm is used for the calculations. For further detail, refer to norm

210 Chapter 6. Function Reference

Examples

A = random(3,3)-0.5*ones(3,3)?

A (a square matrix) =

0.0618661 0.0896177 0.185398
0.390622 0.00422128 -0.150638

-0.112622 0.42229 0.448818

blknorm(A,[1,1; 1,1; 1,1])

ans (a square matrix) =

0.0618661 0.0896177 0.185398
0.390622 0.00422128 0.150638
0.112622 0.42229 0.448818

blknorm(A,[3,3])

ans (a scalar) = 0.682429

compare to the following:
max(svd(A))

ans (a scalar) = 0.682429

B = [1,2,3,4; 5,6,7,-8; 9,10,-11,12]?

B (a rectangular matrix) =

1 2 3 4
5 6 7 -8
9 10 -11 12

blk = [2,1;1,1;1,1]
examine 1,1 entry of blknorm result
blknorm(B,blk)

ans (a square matrix) =

blknorm 211

2.23607 3 4
7.81025 7 8

13.4536 11 12

and compare to
norm(B(1,1:2))

ans (a scalar) = 2.23607

See Also

norm

conpdm 213

conpdm

Syntax

outpdm = conpdm(mat,domain,{skipChks})

Parameter List

Inputs: mat constant matrix
domain domain over which outsys will be defined.

Keywords: skipChks Boolean specifying that syntax checking is to be skipped.

Outputs: outpdm pdm

Description

Creates a pdm data object from a constant matrix. Outpdm represents a constant gain;
its value is repeated at every instance of the domain. It is equivalent to,

outpdm = pdm(kronecker(ones(length(dom),1),mat),dom)

and is a useful shorthand for including constant values in a pdm plot.

This function may be superceded by redefining the augmentation operators
and other functions in a later release of Xmath. To maintain future upwards
compatibility avoid using this function when developing derivative software.

consys 215

consys

Syntax

outsys = consys(mat,{skipChks})

Parameter List

Inputs: mat constant matrix

Keywords: skipChks Boolean specifying that syntax checking is to be skipped.

Outputs: outsys Dynamic System

Description

Creates a Dynamic System object from a constant matrix. Outsys represents a
constant gain; the A, B and C matrices are empty. It is equivalent to,

outsys = system([],[],[],mat)

and can be useful in specifying constant inputs to freq.

This function may be superceded by redefining the augmentation operators
and other functions in a later release of Xmath. To maintain future upwards
compatibility avoid using this function when developing derivative software.

csum 217

csum

Syntax

[outpdm] = csum(inpdm, {channels})

Parameter List

Inputs: inpdm real or complex valued pdm or constant matrix

Keywords: channels Sum over channels. outpdm has the same dimensions as
inpdm.

Outputs: outpdm output pdm

Description

Perform a cumulative sum over the rows of a matrix or a pdm. If channels is specified
then the sum is performed over the domain of the pdm.

Examples

A = [ones(6,1),random(6,1)]?

A (a rectangular matrix) =

1 0.608453
1 0.854421
1 0.0642647
1 0.827908
1 0.926234
1 0.566721

csum(A)

218 Chapter 6. Function Reference

ans (a rectangular matrix) =

1 0.608453
2 1.46287
3 1.52714
4 2.35505
5 3.28128
6 3.848

pdmA = pdm(A,[1,2,3])?
pdmA (a pdm) =
domain | Col 1 Col 2
-------+------------------------

1 | Row 1 1 0.608453
| Row 2 1 0.854421

-------+------------------------
2 | Row 1 1 0.0642647
| Row 2 1 0.827908

-------+------------------------
3 | Row 1 1 0.926234
| Row 2 1 0.566721

-------+------------------------

csum(pdmA)
ans (a pdm) =
domain | Col 1 Col 2
-------+------------------------

1 | Row 1 1 0.608453
| Row 2 2 1.46287

-------+------------------------
2 | Row 1 1 0.0642647
| Row 2 2 0.892173

-------+------------------------
3 | Row 1 1 0.926234
| Row 2 2 1.49296

-------+------------------------

csum(pdmA,channels)

csum 219

ans (a pdm) =
domain | Col 1 Col 2
-------+-----------------------

1 | Row 1 1 0.608453
| Row 2 1 0.854421

-------+-----------------------
2 | Row 1 2 0.672717
| Row 2 2 1.68233

-------+-----------------------
3 | Row 1 3 1.59895
| Row 2 3 2.24905

-------+-----------------------

ctrlplot 221

ctrlplot

Syntax

graph = ctrlplot(pdm,old graph,{keywords})

Parameter List

Inputs: pdm Pdm (or matrix) containing the data to be plotted.

old graph (optional) Graphical object to which data is added. Con-
ceptually the same as plot(pdm,{keep=old graph}).

Keywords:

The following keywords specify the basic plot format. Only one can be selected.

timeresp (default) real(pdm) vs. domain. This is the same as the
default plot function and is suitable for time domain re-
sponses

bode Two subplots are generated: log magnitude vs. domain
and angle vs. domain. They are positioned one above the
other. If present, old graph must also be in this format.

nyquist imag(pdm) vs. real(pdm). Standard Nyquist plot.

nichols log magnitude vs. angle. Standard Nichols chart.

logmagplot log magnitude vs. domain.

phaseplot angle vs. domain.

The following keywords specify whether the domain is log or linear scale. This is not
applicable to the Nyquist or Nichols plots. The defaults depend upon which of the above
control plot types has been selected.

222 Chapter 6. Function Reference

linear linear domain. Default = 1 for timeresp keyword. Default
= 0 for bode keyword.

log logarithmic domain. Default = 1 for bode keyword. De-
fault = 0 for timeresp keyword.

Default units can be supplied for the magnitude and phase plots (bode, nichols,
logmagplot and phaseplot keywords) with the following keywords.

degrees Angles are specified in degrees (default = 1)

db log magnitudes are specified in decibels (default = 0).

The following keywords behave identically to those in plot. They relate directly to the
line/marker specifications and must be associated with a particular pdm.

line (default = 1). Plot as a line type.

marker (default = 0). Plot markers.

line style refer to plot

line width refer to plot

marker style refer to plot

marker size refer to plot

Some preprocessing of the data is performed by the following keyword.

unwrap Applicable to bode, nichols and phaseplot keywords.
Phase changes of 2π are unwrapped, rather than being
graphed between −π and π. Default = 1.

Outputs: graph Resulting graphical object.

ctrlplot 223

Description

This function performs some common control system related plotting. The user can use
ctrlplot to set up a basic plot and perform some preprocessing of the data. This
generates a graphical object containing the data and the user can perform subsequent
calls to plot to add things like text, labels, gridding etc. The second argument
(optional) is a graphical object to which the pdm will be added.

Plots over a domain (bode, timeresp, logmagplot, phaseplot) must be called with a pdm.
A matrix or scalar can be turned into a suitable pdm with the conpdm function. Nyquist
and Nichols plots can also plot scalars. Points such as -1 are often useful. The user
should specify a marker so that such points show up. When mixing scalar and pdm data
on a Nyquist or Nichols plot, plot the pdm data first to get a reasonable choice of axes.

For Bode plots, two graphs are created — the magnitude and the phase plots — and
positioned one above the other. The result is returned as a single graphical object.
Similarly, when adding data to Bode plots, the existing graphical object must also
contain two subplots.

Default labels, corresponding to the most common use of the particular invocation, are
put on the axes. These can be overwritten with subsequent calls to plot.

Examples:

Create 2 systems.

sys1 = 1/makepoly([1,1],"s")
sys2 = 2*sys1*10/makepoly([1,1,10],"s")

w1 = logspace(0.01,10,50)’
w2 = sort([w1;[0.35:0.01:0.65]’])
sys1g = freq(sys1,w1)
sys2g = freq(sys2,w2)

Bode plots

g1 = ctrlplot(sys1g,{bode});
g1 = ctrlplot(sys2g,g1,{bode});
g1 = plot({keep=g1,title = "Bode plots",...

224 Chapter 6. Function Reference

legend = ["sys1","sys2"]})?

ctrlplot 225

Frequency

0.1 10.01 10

M
ag

ni
tu

de

0.0001

0.001

0.01

0.1

1

1e-05

10

Bode plots

sys1

sys2

Frequency

0.1 10.01 10

P
ha

se
 (

de
gr

ee
s)

-250

-200

-150

-100

-50

-300

0

226 Chapter 6. Function Reference

Nyquist plots
g2 = ctrlplot(sys1g,{nyquist});
g2 = ctrlplot(sys2g,g2,{nyquist});
g2 = ctrlplot(-1,g2,{nyquist,marker=1,line=0});
g2 = plot(g2,{projection="orthographic",...

legend=["sys1","sys3","critical point"],title="Nyquist plots"})?

ctrlplot 227

Real

-1 0 1-2 2

Im
ag

in
ar

y

-1.5

-1

-0.5

0

-2

0.5

Nyquist plots

sys1

sys3

critical point

228 Chapter 6. Function Reference

Create a second order lightly damped system to illustrate
time response plotting. The calculation is repeated with
a non-zero initial condition.

sys = 5/makepoly([1,1,5],"s")
u = gstep([0:0.05:10],[0;1;5],[0;1;-1])
y0 = sys*u
[a,b,c,d] = abcd(sys)
sys = system(a,b,c,d)
y1 = system(sys,{X0=[-1;0]})*u

Now plot the result

g1 = ctrlplot(u,{line style=2});
g1 = ctrlplot(y0,g1,{line style=1});
g1 = ctrlplot(y1,g1,{line style=4});
g1 = plot(g1,{!grid,legend=["input";"x0 = zero";"non-zero x0"]})?

ctrlplot 229

2 4 6 80 10

-2

-1

0

1

-3

2

input

x0 = zero

non-zero x0

230 Chapter 6. Function Reference

See Also:

plot.

daug 231

daug

Syntax

out = daug (sys1,sys2,...)

Parameter List

Inputs: sys1 Input systems. These can be dynamical systems and con-
stants, or pdms and constants.

... “

Outputs: out output system.

Description

Diagonal augmentation of dynamical system/pdm/constant, matrices.

out =


sys1 0 . . . 0

0 sys2 . . . 0
...

...
. . .

...
0 0 . . . sysN



Limitations

Only 21 systems can be augmented with a single function invocation.

Examples

daug([1,1],[2;2],inf)

232 Chapter 6. Function Reference

ans (a square matrix) =

1 1 0 0
0 0 2 0
0 0 2 0
0 0 0 Inf

sys1 = randsys(1,1,2,{stable})
sys1 = system(sys1,{statenames="sys1state"})?

sys1 (a state space system) =

A
-0.886949

B
0.853282 0.012459

C
0.186754

D
0.492058 0.748961

X0
0

State Names

sys1state

System is continuous

sys2 = randsys(1,2,1,{stable})
sys2 = system(sys2,{statenames="sys2state",x0=1})?

sys2 (a state space system) =

A

daug 233

-1.67106

B
0.579502

C
0.262815
0.436099

D
0.911055
0.808267

X0
1

State Names

sys2state

System is continuous

Note the effect of the constant in the following
daug(sys1,10,sys2)

ans (a state space system) =

A
-0.886949 0
0 -1.67106

B
0.853282 0.012459 0 0
0 0 0 0.579502

C
0.186754 0
0 0
0 0.262815
0 0.436099

234 Chapter 6. Function Reference

D
0.492058 0.748961 0 0
0 0 10 0
0 0 0 0.911055
0 0 0 0.808267

X0
0
1

State Names

sys1state sys2state

System is continuous

pdm1 = randpdm(3,2,2)?

pdm1 (a pdm) =

domain | Col 1 Col 2
-------+---------------------------

0 | Row 1 0.810265 0.259043
| Row 2 0.413909 0.359993

-------+---------------------------
1 | Row 1 0.691279 0.765686
| Row 2 0.357265 0.76934

-------+---------------------------
2 | Row 1 0.547763 0.0962289
| Row 2 0.956117 0.220741

-------+---------------------------

pdm2 = pdm(10*ones(3,1),domain(pdm1))?

pdm2 (a pdm) =

domain |
-------+-----

daug 235

0 | 10
-------+-----

1 | 10
-------+-----

2 | 10
-------+-----

daug(pdm1,pdm2)

ans (a pdm) =

domain | Col 1 Col 2 Col 3
-------+----------------------------------

0 | Row 1 0.810265 0.259043 0
| Row 2 0.413909 0.359993 0
| Row 3 0 0 10

-------+----------------------------------
1 | Row 1 0.691279 0.765686 0
| Row 2 0.357265 0.76934 0
| Row 3 0 0 10

-------+----------------------------------
2 | Row 1 0.547763 0.0962289 0
| Row 2 0.956117 0.220741 0
| Row 3 0 0 10

-------+----------------------------------

delsubstr 237

delsubstr

Syntax

[outstr] = delsubstr(str,charstr)

Parameter List

Inputs: str String or vector of strings.
charstr String

Outputs: outstr String or vector of strings.

Description

All occurences of the substring, charstr, within str are deleted.

If, by deleting charstr, another occurence of charstr in created, it will not be deleted.
Examine the second example closely to see the effect of this.

Unless str is a scalar string, deleting a whole string element will cause an error.

Example

strvec = ["string one";"aaa";"xxyy"]
out1 = delsubstr(strvec,"g o")?

out1 (a column vector of strings) =

strinne
aaa
xxyy

out2 = delsubstr(strvec,"xy")?

238 Chapter 6. Function Reference

out2 (a column vector of strings) =

string one
aaa
xy

If executed, the following would give an error
out3 = delsubstr(strvec,"a")?

fitsys 239

fitsys

Syntax

[sys] = fitsys(data,npoles,nzeros,weight, {skipchks,Hertz})

Parameter List

Inputs: data Complex valued data (pdm).
npoles Order of requested fit. (optional, default = 0).
nzeros Number of zeros in transfer function. (optional, default =

npoles)
weight Weighting function. (scalar, pdm, or Dynamic System)

(optional, default = 1).

Keywords: Hertz Boolean. This keyword is mandatory as the function must
know whether the domain is in Hertz or radians/second
(specified by !Hertz) to fit correctly. Note that the Xmath
function freq assumes that the frequency range is specified
in Hertz.

skipchks Boolean. Skip the error checking. (Default = 0)

Outputs: sys Dynamic system, order = npoles.

Description

Fits a transfer function to complex valued data. npoles and nzeros specifies the number
of poles and zeros.

The optional argument weight, specifies a weighting for the fit. If weight is a pdm it
must be over the same domain as data. It may also be a Dynamic System, in which
case the magnitude of its frequency response is the weight. A scalar weight may also be
specified although this will have no effect. For logscale frequency data a weight of close
to 1/s is strongly recommended.

240 Chapter 6. Function Reference

The primary use of this routine is the fitting of D scale weights for mu synthesis
iterations.

Chebyshev polynomials are used as basis functions for both the numerator and
denominator polynomials.

WARNING: This routine uses iterative polynomial calculations which are not well
conditioned for high order (> 6) fits.

Reference

For further information see: “Curve Fitter for Pole-Zero Analysis,” J.L. Adcock,
Hewlett-Packard Journal, p. 33, January 1987.

Example

Set up a plant to generated data for the fitting
problem.

plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...
/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Note that plant has right half plane zeros

rifd(plant)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000

Zeros:

fitsys 241

real imaginary frequency damping
(rad/sec) ratio

-1.0000e+00 0.0000e+00 1.0000e+00 1.0000
5.0000e-01 3.1225e+00 3.1623e+00 -0.1581
5.0000e-01 -3.1225e+00 3.1623e+00 -0.1581

omega = logspace(0.001,100,200)
plantg = freq(plant,omega)

Use complex cepstrum to fit minimum phase equivalent
to the magnitude of the data. One of the principle
uses of the fitsys function is fitting approximations
to noisy data. To illustrate the concepts, no noise
is added here.

cdata = mkphase(abs(plantg))

gph1 = ctrlplot([plantg,cdata],{phaseplot});
gph1 = plot(gph1,{title="Data and minimum phase fit",...

legend=["original data";"minimum phase fit"]})?

242 Chapter 6. Function Reference

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-300

-200

-100

0

-400

100

Data and minimum phase fit

original data

minimum phase fit

fitsys 243

Create fitting weight. 1/s works well for logspaced
data.

wght = 1/makepoly([1,0],"s")

Fit new system and compare pole location with
the original. Note that it is minimum phase.

nsys = fitsys(cdata,3,3,wght)
rifd(nsys)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.1043e-02 -3.1249e-01 3.1663e-01 0.1612
-5.1043e-02 3.1249e-01 3.1663e-01 0.1612
-5.0107e+00 0.0000e+00 5.0107e+00 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-1.0189e+00 0.0000e+00 1.0189e+00 1.0000
-5.0906e-01 -3.0989e+00 3.1405e+00 0.1621
-5.0906e-01 3.0989e+00 3.1405e+00 0.1621

nsysg = freq(nsys,omega)
gph2 = ctrlplot([plantg,nsysg],{bode});
gph2 = plot(gph2,{title="Data and minimum phase fit",...

legend=["original system";"minimum phase system"]})?

244 Chapter 6. Function Reference

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.1

1

10

0.01

100

Data and minimum phase fit

original system

minimum phase system

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-300

-200

-100

0

-400

100

fitsys 245

Limitations

Limited to SISO systems.

See Also

tfid

gstep 247

gstep

Syntax

gPdm = gstep (ytime,timespec,valspec, {skipChks})

Parameter List

Inputs: ytime output time vector (seconds).
timespec times for specified step data (optional)
valspec value for specified step data (optional)

Keywords: skipChks Boolean specifying that syntax checking is to be skipped.

Outputs: gPdm pdm containing the step values as a function of time.

Description

This function creates a PDM over the domain: ytime. At ytime = timespec(i) the
output steps to value: valspec(i) and maintains that value until the next specified step
or the end of the domain.

Example

time = [0:100]
steptimes = [5,25,30,65,90]
stepvalues = [-1,2,1,-1.5,1.5]
out = gstep(time,steptimes,stepvalues)
gph1 = ctrlplot(out);
gph1 = plot(gph1,{title="gstep example"})?

248 Chapter 6. Function Reference

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.1

1

10

0.01

100

Data and minimum phase fit

original system

minimum phase system

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-300

-200

-100

0

-400

100

gstep 249

See Also

randpdm, gcos, gsin, gpulse, gsawtooth, gsquarewave

hinfnorm 251

hinfnorm

Syntax

[out,omega] = hinfnorm(sys,tol,{imag eps,max it})

Parameter List

Inputs: sys Dynamic System, frequency response (pdm), or constant
gain (matrix).

sys Specifies the relative tolerance of the answer when the in-
put is a Dynamic SystemDefault = 0.001.

Keywords: imag eps Epsilon value for determining imaginary eigenvalues of the
Hamiltonian. Default = sqrt(eps).

max it Maximum number of iterations. Default = 100.

Outputs: out H∞ norm of the input system. Scalar or pdm or matrix
input systems. 2×1 vector for Dynamic System inputs.
An upper bound of inf indicates that the maximum number
of iterations was exceeded.

omega Frequency (Hz) where the norm is achieved.

Description

The H∞ norm is defined to be the supremum, over frequency, of the maximum singular
value of the system’s frequency response.

If the input system is a pdm, it is assumed to be a frequency response and the norm is
calculated only from the frequencies provided.

If the inputs system is a matrix, it represents a constant gain and the maximum singular
value of the matrix is returned. Note that this is NOT the same as the result of
norm(sys,inf).

252 Chapter 6. Function Reference

Stable Dynamic System norms are calculated by an iterative Hamiltonian method. In
this case out is a 2×1 vector with upper and lower bounds for the norm.

Example

Set up a simple closed loop problem.
This example is given in more detail in the
hinfsyn online help.

plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...
/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Create weights

Wperf = 100/makepoly([100,1],"s")
Wact = makepoly([0.5,0.05],"s")/makepoly([0.05,1],"s")

Form the weighted interconnection structure

sysnames = ["plant";"Wperf";"Wact"]
sysinp = ["ref";"control"]
sysout = ["Wperf"; "Wact"; "ref-plant"]
syscnx = ["control"; ... # input to plant

"ref-plant"; ... # input to Wperf
"control"] # input to Wact

wghtic = sysic(sysnames,sysinp,sysout,syscnx,plant,...
Wperf,Wact)

Design Hinf controller

nctrls = 1
nmeas = 1
gmax = 25
gmin = 0
Kinf = hinfsyn(wghtic,nmeas,nctrls,[gmax;gmin])

Test bounds: 0.0000 < gamma <= 25.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f

hinfnorm 253

25.000 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
12.500 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
6.250 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
3.125 5.1e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
1.562 5.0e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
0.781 3.9e-01 -9.8e+01 1.0e-02 0.0e+00 0.0000 f
1.172 4.8e-01 1.8e-03 1.0e-02 0.0e+00 0.0000 p

Gamma value achieved: 1.1719

form weighted closed loop system

clpinf = starp(wghtic,Kinf)

Compare hinfnorm to gamma value. The H infinity
norm should be less than or equal to gamma.

hinfnorm(clpinf)?

ans (a column vector) =

1.1701
1.16893

See Also

h2norm, hinfsyn, h2syn.

h2norm 255

h2norm

Syntax

out = h2norm(sys)

Parameter List

Inputs: sys Continuous time Dynamic System

Outputs: out H2 norm of the input system

Description

The H2 norm of a stable, strictly proper system is calculated. This is given by

out = trace(CXC′),

where X is the controllability grammian, solving the Lyapunov equation,

AX + XA′ + BB′ = 0.

Example

Set up a simple closed loop problem.
This example is also studied in the
hinfsyn on-line help.

plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...
/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Create weights

256 Chapter 6. Function Reference

Wperf = 100/makepoly([100,1],"s")
Wact = makepoly([0.5,0.05],"s")/makepoly([0.05,1],"s")

Form the weighted interconnection structure

sysnames = ["plant";"Wperf";"Wact"]
sysinp = ["ref";"control"]
sysout = ["Wperf"; "Wact"; "ref-plant"]
syscnx = ["control"; ... # input to plant

"ref-plant"; ... # input to Wperf
"control"] # input to Wact

wghtic = sysic(sysnames,sysinp,sysout,syscnx,plant,...
Wperf,Wact)

Design H2 controller

nctrls = 1
nmeas = 1
K2 = h2syn(wghtic,nmeas,nctrls)

Form the weighted closed loop system and calculate
its H2 norm.

wghtclp2 = starp(wghtic,K2)
h2norm(wghtclp2)?

ans (a scalar) = 2.78655

See Also

h2syn, hinfsyn, hinfnorm

hinfsyn 257

hinfsyn

Syntax

[k,gfin,stat] = hinfsyn(p,nmeas,ncon,gamma,{keywords})

Parameter List

Inputs: p Generalized interconnection structure (Dynamic Sys-

tem)
nmeas measurement vector dimension.
ncon control vector dimension.
gamma H∞ norm bound of controller. For a bisection search spec-

ify gamma = [gamma min;gamma max].

Keywords: schur solution real Schur decomposition for Riccati solution (default)
eig solution eigendecomposition for Riccati solution.
tol tol=value. Specifies the relative tolerance for stopping a

bisection fit. Default = (gamma max - gamma min)/50
epr epr = value. Tolerance for determining when the Hamilto-

nian eigenvalues lie on the jω axis. Default = 0.5*sqrt(eps)
epp epp = value. Tolerance for determining that a Riccati

equation solution is positive definite. Default = 1e-6
maxit maxit = value. Maximum number of bisection iterations.

Default = inf.

Outputs: k Central H∞ optimal controller.
gfin H∞ norm achieved for the returned controller.
stat return status

0 Controller calculated
-1 no controller exists for specified gamma value.

258 Chapter 6. Function Reference

Description

The H∞ (sub)optimal controller for the interconnection, p, is calculated. The resulting
closed loop system is illustrated below.

p

k-

z w

y u

The variables ncon and nmeas are used to specify the dimensions of u and y in the above
diagram (ncon = dim(u) and nmeas = dim(y)). The objective is to design a stabilizing
controller, k, which minimizes the H2 norm of the closed loop system between w and z.

The closed loop system can be formed with the command,

clpsys = starp(p, k).

p is a state-space system, which can be partitioned with respect to [z; y] and [w; u] in
the following way.

p =

 a b1 b2

c1 d11 d12

c2 d21 d22

 .

The following assumptions must hold:

hinfsyn 259

1. (a, b2, c2) is stabilizable and detectable

2. d12 and d21 have full rank

3. The matrix [a − jωI, b2; c1, d12] has full column rank for all ω

4. The matrix [a − jωI, b1; c2, d21] has full row rank for all ω

Reference

This function uses the state-space formulae given in:
“State-space formulae for all stabilizing controllers that satisfy an H∞ norm bound and
relations to risk sensitivity,” Keith Glover and John Doyle, Systems & Control Letters
11, pp. 167–172., Oct, 1988.

Example

Set up a simple closed loop problem.
A tracking problem is chosen. Weights are used to
trade off between tracking performance and actuator
effort.

plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...
/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Create weights (performance & actuator)

Wperf = 100/makepoly([100,1],"s")
Wact = makepoly([0.5,0.05],"s")/makepoly([0.05,1],"s")

Form the weighted interconnection structure

sysnames = ["plant";"Wperf";"Wact"]
sysinp = ["ref";"control"]
sysout = ["Wperf"; "Wact"; "ref-plant"]
syscnx = ["control"; ... # input to plant

"ref-plant"; ... # input to Wperf
"control"] # input to Wact

260 Chapter 6. Function Reference

wghtic = sysic(sysnames,sysinp,sysout,syscnx,plant,...
Wperf,Wact)

Design Hinf controller

nctrls = 1
nmeas = 1
gmax = 25
gmin = 0
Kinf = hinfsyn(wghtic,nmeas,nctrls,[gmax;gmin])

Test bounds: 0.0000 < gamma <= 25.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
25.000 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
12.500 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
6.250 5.2e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
3.125 5.1e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
1.562 5.0e-01 1.7e-03 1.0e-02 0.0e+00 0.0000 p
0.781 3.9e-01 -9.8e+01 1.0e-02 0.0e+00 0.0000 f
1.172 4.8e-01 1.8e-03 1.0e-02 0.0e+00 0.0000 p

Gamma value achieved: 1.1719

rifd(Kinf)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.0000e-02 0.0000e+00 1.0000e-02 1.0000
-1.0347e+00 0.0000e+00 1.0347e+00 1.0000
-2.6846e+00 2.3017e+00 3.5362e+00 0.7592
-2.6846e+00 -2.3017e+00 3.5362e+00 0.7592
-1.2692e+01 0.0000e+00 1.2692e+01 1.0000

Zeros:

hinfsyn 261

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

omega = logspace(0.001,100,200)
Kinfg = freq(Kinf,omega)
gph1 = ctrlplot(Kinfg,{bode});
gph1 = plot(gph1,{title="Kinf"})?

262 Chapter 6. Function Reference

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.01

0.1

1

0.001

10

Kinf

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-80

-60

-40

-20

0

20

-100

40

hinfsyn 263

Use sysic to create unweighted interconnection

ic = sysic("plant",["ref";"ctrl"],["plant";"ref-plant"],...
"ctrl",plant)

clpinf = starp(ic,Kinf)
rifd(clpinf)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-9.5105e-01 0.0000e+00 9.5105e-01 1.0000
-9.7350e-01 -1.2285e+00 1.5675e+00 0.6211
-9.7350e-01 1.2285e+00 1.5675e+00 0.6211
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-5.0901e+00 0.0000e+00 5.0901e+00 1.0000
-1.1812e+01 0.0000e+00 1.1812e+01 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-1.0000e+00 0.0000e+00 1.0000e+00 1.0000
5.0000e-01 3.1225e+00 3.1623e+00 -0.1581
5.0000e-01 -3.1225e+00 3.1623e+00 -0.1581

-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

Examine sensitivity function

sens = inv(1 + plant*Kinf)
sensg = freq(sens,omega)

264 Chapter 6. Function Reference

gph2 = ctrlplot(sensg,{logmagplot});
gph2 = plot(gph2,{title="Kinf controller: sensitivity function"})?

hinfsyn 265

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.1

1

0.01

10

Kinf controller: sensitivity function

266 Chapter 6. Function Reference

Examine step response

step = gstep([0:0.1:10],0,1)
y = clpinf*step
gph3 = ctrlplot([y,step]);
gph3 = plot(gph3,{title="Kinf controller: step response"})?

hinfsyn 267

2 4 6 80 10

0.2

0.4

0.6

0.8

1

0

1.2

Kinf controller: step response

268 Chapter 6. Function Reference

See also

hinfsyn, hinfnorm, h2norm

h2syn 269

h2syn

Syntax

k = h2syn(p,nmeas,ncon,{keywords})

Parameter List

Inputs: p Generalized interconnection structure (Dynamic Sys-

tem)
nmeas measurement vector dimension.
ncon control vector dimension.

Keywords: schur solution real Schur decomposition for Riccati solution (default)
eig solution eigendecomposition for Riccati solution.
epr epr = value. Tolerance for determining when the Hamilto-

nian eigenvalues lie on the jω axis. Default = 0.5*sqrt(eps)

Outputs: k H2 optimal controller.

Description

The H2 optimal controller for the interconnection, p, is calculated. The resulting closed
loop system is illustrated below.

270 Chapter 6. Function Reference

p

k-

z w

y u

The variables ncon and nmeas are used to specify the dimensions of u and y in the above
diagram (ncon = dim(u) and nmeas = dim(y)). The objective is to design a stabilizing
controller, k, which minimizes the H2 norm of the closed loop system between w and z.

p is a state-space system, which can be partitioned with respect to [z; y] and [w; u] in
the following way.

p =

 a b1 b2

c1 d11 d12

c2 d21 d22

 .

The following assumptions must hold:

1. (a, b2, c2) is stabilizable and detectable

2. d12 and d21 have full rank

3. d11 = 0

4. The matrix [a − jωI, b2; c1, d12] has full column rank for all ω

5. The matrix [a − jωI, b1; c2, d21] has full row rank for all ω

In theory the Riccati equations should always have a solution. However, Hamiltonian
eigenvalues which are close to the imaginary axis will give problems. epr specifies a
tolerance for how close the calculated eigenvalues can be to the jω axis.

h2syn 271

Reference

This function uses the state-space formulae given in:
“State-space formulae for all stabilizing controllers that satisfy an H∞ norm bound and
relations to risk sensitivity,” Keith Glover and John Doyle, Systems & Control Letters
11, pp. 167–172., Oct, 1988.

Example

Set up a simple closed loop problem.
This example is also studied in the
hinfsyn on-line help.

plant = makepoly([0.1,-0.1,1],"s")*makepoly([1,1],"s")...
/(makepoly([1,0.1,.1],"s")*(makepoly([0.2,1],"s")))

Create weights. These are definitely not the best
for an H2 design - they are chosen to match with
the Hinf design example for comparison purposes.

Wperf = 100/makepoly([100,1],"s")
Wact = makepoly([0.5,0.05],"s")/makepoly([0.05,1],"s")

Form the weighted interconnection structure

sysnames = ["plant";"Wperf";"Wact"]
sysinp = ["ref";"control"]
sysout = ["Wperf"; "Wact"; "ref-plant"]
syscnx = ["control"; ... # input to plant

"ref-plant"; ... # input to Wperf
"control"] # input to Wact

wghtic = sysic(sysnames,sysinp,sysout,syscnx,plant,...
Wperf,Wact)

Design H2 controller

nctrls = 1
nmeas = 1

272 Chapter 6. Function Reference

K2 = h2syn(wghtic,nmeas,nctrls)
rifd(K2)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.4046e-01 -2.3161e-01 2.7087e-01 0.5186
-1.4046e-01 2.3161e-01 2.7087e-01 0.5186
-1.5863e+00 3.4754e+00 3.8203e+00 0.4152
-1.5863e+00 -3.4754e+00 3.8203e+00 0.4152
-5.2060e+00 0.0000e+00 5.2060e+00 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

omega = logspace(0.001,100,200)
K2g = freq(K2,omega)
gph1 = ctrlplot(K2g,{bode});
gph1 = plot(gph1,{title="K2"})?

h2syn 273

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

0.001

0.01

0.1

0.0001

1

K2

Frequency

0.01 0.1 1 100.001 100

P
ha

se
 (

de
gr

ee
s)

-100

-50

0

-150

50

274 Chapter 6. Function Reference

Use sysic to create unweighted interconnection

ic = sysic("plant",["ref";"ctrl"],["plant";"ref-plant"],...
"ctrl",plant)

clp2 = starp(ic,K2)
rifd(clp2)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-1.8120e-01 -4.2333e-01 4.6048e-01 0.3935
-1.8120e-01 4.2333e-01 4.6048e-01 0.3935
-1.6753e+00 3.4263e+00 3.8139e+00 0.4393
-1.6753e+00 -3.4263e+00 3.8139e+00 0.4393
-4.9957e+00 0.0000e+00 4.9957e+00 1.0000
-5.0000e+00 0.0000e+00 5.0000e+00 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e-02 3.1225e-01 3.1623e-01 0.1581
-5.0000e-02 -3.1225e-01 3.1623e-01 0.1581
-1.0000e+00 0.0000e+00 1.0000e+00 1.0000
5.0000e-01 3.1225e+00 3.1623e+00 -0.1581
5.0000e-01 -3.1225e+00 3.1623e+00 -0.1581

-5.0000e+00 0.0000e+00 5.0000e+00 1.0000
-2.0000e+01 0.0000e+00 2.0000e+01 1.0000

Examine sensitivity function

sens = inv(1 + plant*K2)

h2syn 275

sensg = freq(sens,omega)

gph2 = ctrlplot(sensg,{logmagplot});
gph2 = plot(gph2,{title="K2 controller: sensitivity function"})?

276 Chapter 6. Function Reference

Frequency

0.01 0.1 1 100.001 100

M
ag

ni
tu

de

1

0.1

10

K2 controller: sensitivity function

h2syn 277

Examine step response

step = gstep([0:0.1:10],0,1)
y = clp2*step
gph3 = ctrlplot([y,step]);
gph3 = plot(gph3,{title="K2 controller: step response"})?

278 Chapter 6. Function Reference

2 4 6 80 10

0.2

0.4

0.6

0.8

0

1

K2 controller: step response

h2syn 279

See also

hinfsyn, h2norm, hinfnorm

interp 281

interp

Syntax

outpdm = interp(inpdm,stepsize,final {keywords})

outpdm = interp(inpdm,domspec, {keywords})

Parameter List

Inputs: inpdm Input pdm.
stepsize Increment in outpdm domain.
final Last value in outpdm domain. Optional: default =

max(domain(inpdm)).
domspec Regular vector or pdm used to specify the domain of out-

pdm.

Keywords: order Interpolation order. Values are:
0 zero order hold (default)
1 linear interpolation

Outputs: outpdm interpolated pdm

Description

m is interpolated to give outpdm. Two syntaxes are available for specifying the domain
of outpdm.

In the first the domain is,

[min(domain(inpdm)):final:stepsize].

If final is not specified max(domain(inpdm)) is used.

The second syntax is, domain(domspec) if domspec is a pdm or domspec if domspec is a
vector.

282 Chapter 6. Function Reference

This function differs from the interpolate function in that it can handle zero order
hold type interpolation and deal with irregularly spaced input pdms. Irregularly spaced
output pdms can be generated with the domspec syntax. These features are often useful
when dealing with data generated from experiments.

Example

time = [0:1:5]
u = gstep(time,time,time)

u1 = interp(u,0.25,{order=0})

time2 = sort(5*random(20,1))
u2 = interp(u,time2,{order=1})

gph1 = ctrlplot(u2,{marker=1,marker style=1,...
marker size=1,line=0}); gph1 =

plot(u1,gph1,{marker=1,marker style=6,...
marker size=1,line=0}); gph1 =

plot(u,gph1,{marker=1,marker style=9,...
marker size=1,line=0}); gph1 = plot(gph1,{legend=["1st

order interp.";...
"0 order interp.";"original pdm"]})?

interp 283

1 2 3 40 5

1

2

3

4

0

5

1st order interp.

0 order interp.

original pdm

284 Chapter 6. Function Reference

See Also

interpolate

mergeseg 285

mergeseg

Syntax

outpdm = mergeseg(pdm1,pdm2, {keywords})

Parameter List

Inputs: pdm1 input pdm

pdm2 input pdm

Keywords: domsort Sort the result of merging the pdms. If !domsort then
pdm2 is simply concatenated onto pdm1. Boolean. De-
fault = 1.

increasing Sort in increasing order. Boolean. Default = 1.
decreasing Sort in decreasing order. Boolean. Default = 0.
duplicates Leave duplicated domain values in outpdm. If !duplicates

is specified then only the matrices from pdm1 associated
with the duplicate domain values are included in outpdm.
The value of tol determines what constitutes equality in
the domains. Boolean. Default = 1.

tol Tolerance in determining duplicates in the domains. De-
fault = eps*max([domain(pdm1);domain(pdm2)])

Outputs: outpdm output pdm

Description

This function concatenates two pdms and then sorts them according to their domain.
This is useful for merging experimental data taken over different frequency or time
ranges. A regular domain is not required. The pdms must have equal row and column
dimensions.

286 Chapter 6. Function Reference

Example

time1 = [0:0.025:1]
pdm1 = gsin(time1,{frequency=2})
time2 = [0.8:0.02:1.5]
pdm2 = randpdm([],1,1,{dom=time2,zeromean})

outpdm = mergeseg(pdm1,pdm2)

gph1 = ctrlplot(outpdm);
gph1 = plot(pdm1,gph1,{marker=1,marker style=8,...

line=0});
gph1 = plot(pdm2,gph1,{marker=1,marker style=1,...

line=0,legend=["outpdm";"pdm1";"pdm2"]})?

mergeseg 287

0.5 10 1.5

-0.5

0

0.5

-1

1

outpdm

pdm1

pdm2

mkpert 289

mkpert

Syntax

[pertsys] = mkpert(Delta,blk,mubnds,{fselect,pnorm,Hertz})

Parameter List

Inputs: Delta Lower bound perturbation data from mu calculation.
(pdm)

blk block structure (refer to mu function documentation).
(matrix)

mubnds Calculated mu bounds (pdm).

Keywords: fselect Scalar valued. Specifies the frequency for interpolation,
overriding that obtained from mubnds.

pnorm Scalar valued. Specifies the norm of the resulting system,
overriding that calculated from mubnds.

Hertz Boolean. Domain of pdms are in units of Hertz. This
keyword is mandatory. To specify radians/sec use !Hertz.

Outputs: pertsys Constructed perturbation. (Dynamic System)

Description

Creates the rational, stable, system which interpolates the perturbation, Delta, at a
specified frequency. The frequency chosen is the one where the lower bound to mu is
maximum. This corresponds to the smallest destabilizing perturbation. The system has
the assumed structure given by blk.

This function may also be called with a single pdm argument. The result will interpolate
the argument at its first domain value.

This function is used to construct a bad perturbation, the effects of which can be
studied by simulation.

290 Chapter 6. Function Reference

The bounds, mubnds, are used to determine the ”worst-case” frequency for the
interpolation. The norm of pertsys is 1/(norm(Delta(jω))) where ω is the chosen
frequency. This is the smallest destabilizing perturbation at that frequency.

Both the interpolation frequency and the norm of pertsys can be specified via keywords.
The user may be interested only in certain frequency ranges and may have an assumed
norm bound on the perturbation (typically unity).

Components of pertsys (or all of it if appropriate) may be real valued gains rather than
dynamic systems.

Example

The use of mkpert is studied in context in the on-line help for musynfit and the manual
documentation for musynfit (page 299).

mkphase 291

mkphase

Syntax

[cdata] = mkphase(magdata, {skipchks,Hertz})

Parameter List

Inputs: magdata Magnitude data (pdm)

Keywords: skipchks Boolean. Skip the error checking. (Default = 0)
Hertz The domain of the pdm is in Hertz. This is the default.

!Hertz specifies a domain in rad/sec.

Outputs: cdata Complex valued data corresponding to a minimum phase
transfer function.

Description

Fits phase data to magnitude data. The phase is equivalent to that produced by
minimum phase system. A complex cepstrum method is used.

Reference

For further details see: “Digital Signal Processing,” A.V. Oppenheim & R.W. Schafer,
p.501, Prentice-Hall, 1975.

Example

The on-line help example is the same as that for fitsys. Refer to page 239.

292 Chapter 6. Function Reference

Limitations

Limited to SISO systems.

See Also

fitsys, ccepstrum

modalstate 293

modalstate

Syntax

outsys = modalstate(sys, {keywords})

Parameter List

Inputs: sys Input Dynamic System

Keywords: increasing Boolean. Order in terms of increasing magnitude (contin-
uous) or angle (discrete). Default = 1

decreasing Boolean. Order in terms of decreasing magnitude (contin-
uous) or angle (discrete). Default = 0

splitstable Boolean. Separate the stable from the unstable modes and
order separately. Default = 0.

Outputs: outsys output Dynamic System

Description

Transform the system to give a block diagonal A matrix, with complex eigenvalues in
2×2 blocks and real eigenvalues in 1×1 blocks. The system must be diagonalizable to
avoid introducing errors. The initial condition is also transformed. The state names are
deleted, however the input and output names, and period (if discrete) are preserved.

Example

sys = randsys(6,1,1,{stable})
rifd(sys)
Poles:

real imaginary frequency damping
(rad/sec) ratio

294 Chapter 6. Function Reference

-8.1602e-01 1.3353e+00 1.5649e+00 0.5215
-8.1602e-01 -1.3353e+00 1.5649e+00 0.5215
-4.6142e+00 -1.6648e+01 1.7275e+01 0.2671
-4.6142e+00 1.6648e+01 1.7275e+01 0.2671
-2.2478e+01 0.0000e+00 2.2478e+01 1.0000
-3.9525e+01 0.0000e+00 3.9525e+01 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-1.0270e+00 -1.5086e+00 1.8250e+00 0.5628
-1.0270e+00 1.5086e+00 1.8250e+00 0.5628
-4.5529e+00 -1.6621e+01 1.7233e+01 0.2642
-4.5529e+00 1.6621e+01 1.7233e+01 0.2642
-2.4416e+01 0.0000e+00 2.4416e+01 1.0000
-3.9534e+01 0.0000e+00 3.9534e+01 1.0000

sys1 = modalstate(sys)
[a1,,,] = abcd(sys1)
compare a1 to the poles of sys
a1?

a1 (a square matrix) =

-0.816024 -1.33529 0 0 0 0
1.33529 -0.816024 0 0 0 0
0 0 -4.61417 16.6478 0 0
0 0 -16.6478 -4.61417 0 0
0 0 0 0 -22.4779 0
0 0 0 0 0 -39.5252

mu 295

mu

Syntax

[mubnds,D,Dinv,Delta,sens] = mu(M,blk)

Parameter List

Inputs: M Matrix or pdm.
blk Block structure defined by a matrix of dimension: number

of blocks × 2. If the ith block has c outputs and r inputs,
then blk(i,:) = [r,c]. The default is equivalent to 1x1 blocks
(M must be square).

Outputs: mubnds Upper and lower bounds (in vector form) for mu(M).
D,Dinv D-scale matrices giving the calculated upper-bound.

mu(M) ≤ msv(D*M*Dinv)
Delta Perturbation achieving the lower bound.
sens Sensitivity of the upper bound with respect to the values

in D & Dinv

Description

Calculates the upper and lower bounds of the structured singular value of M, with block
structure: blk. The upper bound scaling matrices and the lower bound destabilizing
perturbation also returned.

The Osborne method is used to calculate the upper bound (for small matrices this is
enhanced by a Perron Frobenius method) and a power iteration is used for the lower
bound.

Example

The following is the classic example showing

296 Chapter 6. Function Reference

that mu is not equal to its upper bound for
more than three full blocks.

gamma = 3 + sqrt(3); beta = sqrt(3) -1
a = sqrt(2/gamma); b = 1/sqrt(gamma)
c = 1/sqrt(gamma); d = -sqrt(beta/gamma)
f = (1+jay)*sqrt(1/(gamma*beta))
psi1 = -pi/2; psi2 = pi

U = [a,0; b,b; c,jay*c; d,f]
V = [0,a; b,-b; c,-jay*c; f*exp(jay*psi1), d*exp(jay*psi2)]
scl = diagonal(random(4,1)+0.1*ones(4,1))
M = scl*U*V*’*inv(scl)

Consider 4 1x1 blocks

blk1 = [1,1; 1,1; 1,1; 1,1]
[mubnds1,D1,Dinv1,Delta1] = mu(M,blk1)

max(svd(M))?
ans (a scalar) = 2.81264

max(svd(D1*M*Dinv1))?
ans (a scalar) = 1

mubnds1?
mubnds1 (a column vector) =

1
0.860682

Consider 1 4x4 block (equivalent to max sing. val.)

blk2 = [4,4]
[mubnds2,D2,Dinv2,Delta2] = mu(M,blk2)

Note that the perturbation is such that
det(I-M Delta) = 0.

max(svd(D2*M*Dinv2))?

mu 297

ans (a scalar) = 2.81264

mubnds2?
mubnds2 (a column vector) =

2.81264
2.81264

det(eye(4,4) - M*Delta2)?
ans (a scalar) = -2.53156e-16 + 4.3828e-17 j

For an example of how mu is used for system robustness analysis, refer to the on-line
help for musynfit (page 299).

Limitations

This version of the software cannot handle repeated blocks or real valued blocks.

musynfit 299

musynfit

Syntax

[Dsys,Dinvsys] = musynfit(Dmag,blk,nmeas,nctrls,..
weight,M,order,{keywords})

Parameter List

Inputs: Dmag New D matrix from mu calculation (magnitude data only).
The domain is assumed to be in Hertz.

blk block structure (refer to mu function documentation).
nmeas scalar: number of measurements
nctrls scalar: number of controls
weight (optional) weighting function for the fit. Typically the sen-

sitivity output of mu is used. Must be a pdm of dimension:
number of blocks × 1.

M (optional) Matrix (pdm) of interest in the µ calculation.
I.e. µ(M) ≤ σ(DMD−1). If M is provided a second plot
compares the µ(M) upper bound, based on Dmag, to the
mu(M) upper bound using a frequency response of the D
scale transfer function approximation.

order (optional) A scalar (or vector of dimension nblks-1) spec-
ifying the order of the fit to be used. If this argument is
present, the function runs without requiring user interac-
tion and does not graph the results.

300 Chapter 6. Function Reference

Keywords: Hertz Boolean. This keyword is mandatory as the function must
know whether the domain is in Hertz or radians/second
(specified by !Hertz) to fit correctly. Note that the Xmath
function freq assumes that the frequency range is specified
in Hertz.

plotweight Boolean, default = 0. This will generate a second plot
showing the weighting function. This can be useful is as-
sessing the quality of a given transfer function fit. If the
variable M is also specified, the weighting function plot
takes priority over the upper bound comparison plot.

fit Integer specifying the routine to be used in fitting the
data. This sets the default routine which may be changed
interactively by the user. The choices are:

fit = 1 Xmath function: tfid
fit = 2 Xmu function: fitsys

The default is fit = 2.

Outputs: Dsys New left D scale system.
Dinvsys New D inverse system (to be multiplied to M on the right).

Description

Fits stable, minimum phase, transfer functions to each block of the D-scale matrix. A
complex cepstrum technique is used to generate the phase response from the provided
magnitude data.

The user may interactively select a fitting order and compare the result with the data. A
choice of fitting routines is provided. If the order is specified in the command line the
function is not interactive.

Example

The nominal plant is a double integrator.
A multiplicative perturbation weight reflects
increased uncertainty at high frequencies

musynfit 301

P = 1/makepoly([1,0,-0.01],"s")
W = makepoly([1,20],"s")/makepoly([1,200],"s")

Set up an unweighted interconnection structure
for unity gain negative feedback. We include
the perturbation too.

nms = ["P";"W"]
inp = ["delt";"ref";"noise";"control"]
outp = ["W" ;"ref- delt - P";"control";"ref-delt-P-noise"]
cnx = ["control";"P"]
ic = sysic(nms,inp,outp,cnx,P,W)

Now include some weights for performance:

Wperf = makepoly([0.01,1],"s")/makepoly([1,0.01],"s")
Wact = 0.1* makepoly([1,1],"s")/makepoly([0.05,1],"s")
Wnoise = 0.01
Wref = makepoly([0.005,1],"s")/makepoly([0.05,1],"s")

Apply weights to error signals and unknown
inputs.

wghtic = daug(1,Wperf,Wact,1)*ic*daug(1,Wref,Wnoise,1)

Perform an H infinity design.

nmeas = 1 # number of measurements
ncntrls = 1 # number of controls
gmin = 0
gmax = 10
Kinf = hinfsyn(wghtic,nmeas,ncntrls,[gmin;gmax])
Test bounds: 0.0000 < gamma <= 10.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
10.000 7.1e-01 7.7e-04 9.9e-03 -3.8e-19 0.0049 p
5.000 7.1e-01 7.7e-04 9.8e-03 -1.5e-19 0.0207 p
2.500 7.0e-01 7.8e-04 9.2e-03 0.0e+00 0.1061 p
1.250 6.5e-01 -5.6e+02 6.0e-03 0.0e+00 2.3572 f
1.875 6.9e-01 7.9e-04 8.5e-03 -1.1e-18 0.2681 p

302 Chapter 6. Function Reference

1.562 6.8e-01 8.0e-04 7.7e-03 0.0e+00 0.6811 p
1.406 6.7e-01 8.1e-04 7.0e-03 -1.1e-18 2.0900 f
1.484 6.7e-01 8.0e-04 7.4e-03 0.0e+00 1.0394 f
1.523 6.7e-01 8.0e-04 7.5e-03 -5.0e-19 0.8249 p

Gamma value achieved: 1.5234

G = starp(wghtic,Kinf)
omega = logspace(0.01,100,25)
Gg = freq(G,omega)
G11g = Gg(1,1)
G22g = Gg(2:3,2:3)
rs = max(svd(G11g))
np = max(svd(G22g))

blk = [1,1; 2,2]
[rpbnds1,D1,Dinv1,Delta1,sens1] = mu(Gg,blk)

gph1 = ctrlplot([np;rs;rpbnds1],{log});
gph1 = plot(gph1,{!grid,title="mu analysis",legend=["nominal
perf.";...

"robust stab.";"robust perf.(upper)";"robust perf.
(lower)"]})?

musynfit 303

0.1 1 100.01 100

0.2

0.4

0.6

0.8

1

0

1.2

mu analysis

nominal perf.

robust stab.

robust perf.(upper)

robust perf. (lower)

304 Chapter 6. Function Reference

Fit transfer functions to D1 & Dinv1 for a mu
synthesis iteration

[Ds,Dinvs] = musynfit(D1,blk,nmeas,ncntrls,sens1,Gg,{Hertz})

musynfit 305

Frequency (Hz)

0.1 1 100.01 100

M
ag

ni
tu

de

10

100

1000

1

10000

D scale fit, block: 1

Magnitude data

Previous fit, order: 0

New fit, order: 3

Frequency (Hz)

0.1 1 100.01 100

M
ag

ni
tu

de

0.01

0.1

1

10

0.001

100

Upper bound comparison, block: 1

Data based bound

Previous fit bound, order: 0

New fit bound, order: 3

Frequency (Hz)

0.1 1 100.01 100

M
ag

ni
tu

de

0.0001

0.001

0.01

0.1

1e-05

1

D scale fit weight for block: 1

306 Chapter 6. Function Reference

Apply the D scales to another H infinity design

Kmu = hinfsyn(Ds*wghtic*Dinvs,nmeas,ncntrls,[gmin;gmax])
Test bounds: 0.0000 < gamma <= 10.0000
gamma Hx eig X eig Hy eig Y eig nrho xy p/f
10.000 6.5e-01 5.6e-07 9.9e-03 -1.0e-15 0.0027 p
5.000 6.4e-01 5.6e-07 9.8e-03 -6.3e-16 0.0113 p
2.500 6.4e-01 5.6e-07 9.2e-03 0.0e+00 0.0517 p
1.250 6.3e-01 5.6e-07 6.0e-03 -7.6e-20 0.4688 p
0.625 5.6e-01 -1.1e+00 7.1e-14 ******* ******* f
0.938 6.1e-01 -2.8e+01 7.1e-14 ******* ******* f
1.094 6.2e-01 5.6e-07 4.1e-03 -3.5e-16 1.2451 f
1.172 6.2e-01 5.6e-07 5.2e-03 -6.3e-18 0.6922 p

Gamma value achieved: 1.1719

Close the loop around the weighted interconnection
structure.

Gmu = starp(wghtic,Kmu)
omega = logspace(0.01,100,40)
Gmug = freq(Gmu,omega)

blk = [1,1; 2,2]
[rpbnds2,D2,Dinv2,Delta2,sens2] = mu(Gmug,blk)
gph3 = ctrlplot(rpbnds2(1,1),{log});
gph3 = ctrlplot(rpbnds1(1,1),gph3,{log});
gph3 = plot(gph3,{!grid,title="Kmu & Kinf mu analysis",...

legend=["Kmu: robust perf.";"Kinf: robust perf."]})?

musynfit 307

0.1 1 100.01 100

0.2

0.4

0.6

0.8

1

0

1.2

Kmu & Kinf mu analysis

Kmu: robust perf.

Kinf: robust perf.

308 Chapter 6. Function Reference

Look at the worst case perturbations for each of
the Kinf and Kmu controllers. Compare also a
random perturbation for each controller. In all cases the
perturbation is of size 0.5 and we choose a perturbation
which is bad at 1Hz.

mupert = mkpert(Delta2,blk,rpbnds2,{fselect=1,pnorm=0.5,Hertz})
mupert = mupert(1,1) # select part to close around top
infpert = mkpert(Delta1,blk,rpbnds1,{fselect=1,pnorm=0.5,Hertz})
infpert = infpert(1,1) # select part to close around top

set up an LFT for the reference tracking problem

M = daug(W,1,1)*consys([0,0,1;1,0,1;-1,1,-1])*daug(1,1,P)

mupertic = starp(mupert,M)
mupertclp = starp(mupertic,Kmu)
munomclp = starp(starp(0,M),Kmu)

infpertic = starp(infpert,M)
infpertclp = starp(infpertic,Kinf)
infnomclp = starp(starp(0,M),Kinf)

rpert = randpert(blk,{pnorm=0.5})
rpert = rpert(1,1)
rpertic = starp(rpert,M)
murpert = starp(rpertic,Kmu)
infrpert = starp(rpertic,Kinf)

Look at step responses

time = [0:0.05:4]
step = gstep(time,0,1)

yinfnom = infnomclp*step
yinfpert = infpertclp*step
ymunom = munomclp*step
ymupert = mupertclp*step

gph4 = ctrlplot([step,yinfnom(1,1),yinfpert(1,1),...

musynfit 309

ymunom(1,1),ymupert(1,1)]);
gph4 = plot(gph4,{legend=["input step";"Kinf nominal";...

"Kinf pert.";"Kmu nominal";"Kmu pert."]})?

310 Chapter 6. Function Reference

1 2 30 4

0.2

0.4

0.6

0.8

1

1.2

0

1.4

input step

Kinf nominal

Kinf pert.

Kmu nominal

Kmu pert.

musynfit 311

Compare with a random perturbation

yinfrandp = infrpert*step
ymurandp = murpert*step

gph5 = ctrlplot([step,yinfnom(1,1),yinfrandp(1,1),...
ymunom(1,1),ymurandp(1,1)]);

gph5 = plot(gph5,{legend=["input step";"Kinf nominal";...
"Kinf rand. pert.";"Kmu nominal";"Kmu rand. pert."]})?

312 Chapter 6. Function Reference

1 2 30 4

0.2

0.4

0.6

0.8

1

1.2

0

1.4

input step

Kinf nominal

Kinf rand. pert.

Kmu nominal

Kmu rand. pert.

musynfit 313

See Also:

mu, hinfsyn, mkpert, hinfnorm.

ophank 315

ophank

Syntax

[SysR,SysU,HSV] = ophank(Sys,{nsr,onepass})

Parameter List

Inputs: Sys Linear, stable, state-space system (continuous)
nsr (optional) Order of the reduced system. If not specified,

the user will be prompted for its value after the Hankel
singular values are displayed.

Keywords: onepass (Boolean) If equal to 1 (true), reduction is calculated in
one pass. If false (!onepass or onepass=0), reduction is
calculated in (number of states of Sys - nsr) passes. De-
faults to 1.

Outputs: SysR Reduced order system; dynamic system object.
SysU Anti-causal optimal system, (only with one keyword); dy-

namic system object.
HSV A column vector containing the Hankel singular values of

the system, Sys.

Description

Calculates an optimal hankel norm reduction of Sys for the additive case.

Any initial state values or state names associated with Sys are not assigned to SysR or
SysU. Input and Output names are maintained.

The current version of ophank is unable to deal with discrete time systems. Users are
advised to call makecontinuous on discrete systems before calling ophank, and then
re-discretize.

316 Chapter 6. Function Reference

Uses additional subroutines ophiter, ophred, ophmult and stable.

This function is cross-licensed from the Model Reduction Module.

Example

Create a five state system for reduction.

a = daug(-0.891334,[-1.20857,0.799042;-0.799042,-1.20857],...
-4.74685,-21.3013)

b = [0.0262569;-0.189601;-0.113729;0.211465;-0.538239]
c = [0.120725,-0.336942,0.397198,-0.700524,-1.02235]
d = 0
sys1 = system(a,b,c,d)
fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)

Reduce to 3 states by Hankel norm approximation

[sysout1,hsv] = ophank(sys1,{nsr=3})
sysout1g = freq(sysout1,fHz)
balerr = sys1g - sysout1g

Reduce to a 3 state system by residualization
for comparison purposes.

sysout2 = sresidualize(sys1,3)
sysout2g = freq(sysout2,fHz)
residerror = sys1g - sysout2g

gph1 = ctrlplot([sys1g,sysout1g,sysout2g,...
balerr,residerror],{logmagplot});

gph1 = plot(gph1,{!grid,legend=["original system";...
"reduced: ophank";"reduced: sresidualize";...
"ophank error";"sresidualize error"]})?

ophank 317

Frequency

0.1 1 100.01 100

M
ag

ni
tu

de

0.001

0.01

0.0001

0.1

original system

reduced: ophank

reduced: sresidualize

ophank error

sresidualize error

318 Chapter 6. Function Reference

See Also

minimal, balmoore.

orderstate 319

orderstate

Syntax

outsys = orderstate(sys,indx)

Parameter List

Inputs: sys Input Dynamic System

indx Lists the desired order of the states in outsys.

Outputs: outsys output dynamic system.

Description

Reorder the states according to the index argument. The state names and initial
condition are also ordered. The input and output names, and period (if discrete) are
preserved.

Example

sys1 = randsys(3,1,1,{stable})
sys1 = system(sys1,{statenames=["s1";"s2";"s3"],...

x0=[0.1;0.2;0.3]})?

sys1 (a state space system) =

A
-2.27378 3.32295 -8.82005
0.65518 -5.41526 9.0643

-1.2488 4.7424 -13.2781

B
0.0879738

320 Chapter 6. Function Reference

0.710595
0.688873

C
0.659532 0.181512 0.390497

D
0.15869

X0
0.1
0.2
0.3

State Names

s1 s2 s3

System is continuous

sys2 = orderstate(sys1,[2,1,3])?
sys2 (a state space system) =

A
-5.41526 0.65518 9.0643
3.32295 -2.27378 -8.82005
4.7424 -1.2488 -13.2781

B
0.710595
0.0879738
0.688873

C
0.181512 0.659532 0.390497

D
0.15869

X0

orderstate 321

0.2
0.1
0.3

State Names

s2 s1 s3

Input Names

Input 1

Output Names

Output 1

System is continuous

randpdm 323

randpdm

Syntax

pdmout = randpdm (ndomain,nrows,ncolumns,{keywords})

Parameter List

Inputs: ndomain length of the domain
nrows number of rows in pdmout
ncolumns number of columns in pdmout

Keywords: complex Boolean. A complex valued pdm is generated. Default =
0.

zeromean Boolean. The values are shifted so that zero is the mean.
Default = 0.

Dfirst First value in the domain. This only a bound if !regular.
Default = 0.

Dlast Last value in the domain. Again this is only a bound if
!regular. Default = ndomain-1.

regular Boolean. Domain is regular. !regular generates a random
domain between Dfirst and Dlast. Default = 1.

Outputs: pdmout Random pdm

Description

A random pdm, with user specified row, column and domain dimension, is generated.
Several additional features can be specified by keywords: real or complex values,
minimum and maximum values of the domain, and whether or not the domain is regular.

Note that the domain related defaults give a domain of [0:ndomain:1]. ndomain can be
specified as zero in which case a random matrix is returned. This is a reasonable way of
generating a random complex matrix.

324 Chapter 6. Function Reference

Examples

pdm0 = randpdm(3,1,2,{zeromean})?

pdm0 (a pdm) =

domain | Col 1 Col 2
-------+-------------------------

0 | -0.043917 -0.0789571
-------+-------------------------

1 | 0.37878 -0.457265
-------+-------------------------

2 | 0.0466939 -0.34413
-------+-------------------------

pdm1 = randpdm(4,1,1,{!regular,Dfirst=2,Dlast=19})?

pdm1 (a pdm) =

domain |
---------+------------
3.1543 | 0.0605523

---------+------------
4.87235 | 0.900169

---------+------------
10.0323 | 0.932966
---------+------------
18.3191 | 0.645692
---------+------------

pdm2 = randpdm(pdm1)?

pdm2 (a pdm) =

domain |
---------+------------
3.1543 | 0.746793

---------+------------
4.87235 | 0.174411

---------+------------

randpdm 325

10.0323 | 0.922528
---------+------------
18.3191 | 0.81113
---------+------------

pdm3 = randpdm(0,3,2,{complex,zeromean})?

pdm3 (a rectangular matrix) =

-0.237052 - 0.10845 j -0.250958 - 0.392096 j
0.097563 + 0.0140395 j -0.255142 - 0.419362 j
0.0178566 - 0.153032 j 0.0986898 + 0.375528 j

randpert 327

randpert

Syntax

[pert] = randpert(blk, {sys,sfreq,complex,pnorm})

Parameter List

Inputs: blk block structure (refer to mu function documentation).
(matrix)

Keywords: sys Boolean. Specifies that pert is a dynamic system. Default
= !sys, i.e. pert is a matrix.

sfreq Scalar valued. If a dynamic system is specified, sfreq is the
frequency with significant phase. Units are Hertz. Default
= 1.0.

complex Boolean. Specifies that pert is complex valued. Default =
1.

pnorm Scalar valued. Specifies the norm of the resulting system.
Default = 1.

Outputs: pert Constructed perturbation

Description

Creates a perturbation of the structure specified by blk. By default this is a complex
valued matrix. The sys keyword will create an allpass Dynamic System. sfreq is used
to specify a frequency (in Hertz) where there is significant phase in the system.

This function is used to construct random perturbations, the effects of which can be
studied by simulation. Dynamic perturbations are appropriate for simulating the effects
of unmodeled dynamics. In such cases, the crossover frequency, or a frequency where mu
is large, are good choices.

328 Chapter 6. Function Reference

Example

The use of randpert is studied in context in the on-line help for musynfit and the
manual documentation for musynfit (page 299).

randsys 329

randsys

Syntax

sys = randsys (nstates,noutputs,ninputs,{keywords})

Parameter List

Inputs: nstates number of states in sys
noutputs number of outputs in sys
ninputs number of inputs in sys

Keywords: stable Boolean. sys is forced to be stable (default = 1)
oscillatory Boolean. Oscillatory poles are allowed. (default = 1). !os-

cillatory gives only real eigenvalues (continuous) or positive
real eigenvalues (discrete).

discrete Boolean. Generate a discrete time system. (default = 0).
dt Sample period for discrete time system (default =

1/(2*Fmax)).
Fmax upper bound of sys pole frequencies (Hz) (default = 10 Hz

or = 1/(2*dt) if dt specified)
Fmin lower bound of sys poles frequencies (Hz) (default =

Fmax/100 Hz)
Dterm Select a random D term (default = 1: a D term is choosen)
linear dist linear distribution of poles. The default is uniform (or

normal) distribution on a log frequency axis. A linear fre-
quency axis distribution may be more representative of
some systems.

Outputs: sys Random Dynamic System

330 Chapter 6. Function Reference

Description

A random system, with user specified state, input and output dimension, is generated.
Several additional features can be specified by keywords: whether or not the system is
stable, where or not it can contain oscillatory modes, whether or not it has a D term,
and bounds on the minimum and maximum pole frequencies.

If the discrete keyword is specified, a bilinear transformation is performed to get the
random discrete system. A sample time can be specified with dt.

Examples

sys1 = randsys(4,1,2,{stable,!oscillatory,...
Fmin=0.1,Fmax=10})

size(sys1)?

ans (a row vector) = 1 2 4

rifd(sys1)?

Poles:

real imaginary frequency damping
(rad/sec) ratio

-2.7920e+00 0.0000e+00 2.7920e+00 1.0000
-5.2688e+00 0.0000e+00 5.2688e+00 1.0000
-5.6953e+00 0.0000e+00 5.6953e+00 1.0000
-5.3738e+01 0.0000e+00 5.3738e+01 1.0000

Zeros:

sys2= randsys(10,1,1,{stable,oscillatory,Fmin=0.1,...
Fmax=1,!Dterm})

rifd(sys2)?

Poles:

randsys 331

real imaginary frequency damping
(rad/sec) ratio

-1.0408e+00 0.0000e+00 1.0408e+00 1.0000
-1.1390e+00 0.0000e+00 1.1390e+00 1.0000
-2.8050e-01 -1.4858e+00 1.5120e+00 0.1855
-2.8050e-01 1.4858e+00 1.5120e+00 0.1855
-1.5337e+00 0.0000e+00 1.5337e+00 1.0000
-5.5566e-01 -1.6958e+00 1.7845e+00 0.3114
-5.5566e-01 1.6958e+00 1.7845e+00 0.3114
-3.1454e+00 0.0000e+00 3.1454e+00 1.0000
-5.6798e+00 0.0000e+00 5.6798e+00 1.0000
-6.1039e+00 0.0000e+00 6.1039e+00 1.0000

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-8.6788e-02 -1.0161e+00 1.0198e+00 0.0851
-8.6788e-02 1.0161e+00 1.0198e+00 0.0851
-1.0395e+00 0.0000e+00 1.0395e+00 1.0000
-1.5152e+00 0.0000e+00 1.5152e+00 1.0000
-6.3796e-01 -1.9633e+00 2.0643e+00 0.3090
-6.3796e-01 1.9633e+00 2.0643e+00 0.3090
-3.1425e+00 0.0000e+00 3.1425e+00 1.0000
-5.8916e+00 1.5472e-01 5.8937e+00 0.9997
-5.8916e+00 -1.5472e-01 5.8937e+00 0.9997

fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)
sys2g = freq(sys2,fHz)

gph1 = ctrlplot([sys1g,sys2g],{bode});
gph1 = plot(gph1,{legend=["sys1 (input 1)";...

"sys1 (input 2)";"sys2"]})?

332 Chapter 6. Function Reference

Frequency

0.1 1 100.01 100

M
ag

ni
tu

de

0.01

0.1

1

0.001

10

sys1 (input 1)

sys1 (input 2)

sys2

Frequency

0.1 1 100.01 100

P
ha

se
 (

de
gr

ee
s)

-80

-60

-40

-20

0

-100

20

randsys 333

sys3 = randsys(6,1,1,{discrete,dt=5})
rifd(sys3)?

Poles:

radius angle
(radians)

0.1652 0.0000
0.4580 0.0000
0.7872 -0.0394
0.7872 0.0394
0.9307 -0.2163
0.9307 0.2163

Zeros:

radius angle
(radians)

0.1623 0.0000
0.7981 0.0000
0.6658 0.0000
0.8921 -0.1981
0.8921 0.1981

15.4278 3.1416

rifd 335

rifd

Syntax

[stat] = rifd(vec,{discrete,Hertz,degrees})

Parameter List

Inputs: vec complex valued vector (or Dynamic System - see below).

Keywords: discrete Boolean. Vector is to be interpreted in the z domain,
rather than the s domain. Default = 0.

Hertz Boolean. Display frequency units in Hertz on the s plane.
!Hertz gives a display in radians/sec. Default = 0.

degrees Boolean. Display angle in degrees for z plane. !degrees
gives a display in radians. Default = 0.

Outputs: stat Status. stat = 1 if an error occurs.

Description

Displays complex valued vectors in terms of s or z domain properties. The primary use
is for interpreting the output of poles or zeros in engineering units.

For the s domain, the real and imaginary parts and frequency and damping are
displayed.

For the z domain, the pole radius and angle are displayed. Note that the angle is
actually the normalized frequency (radians/sample).

If vec is a Dynamic System, the poles and zeros are calculated and displayed. This is
a useful shorthand for the most common usage: rifd(poles(system)). In this case
there is no need to specify the discrete keyword as this is be determined directly from
the Dynamic System.

336 Chapter 6. Function Reference

Examples

sys1 = randsys(4,3,2,{stable})
rifd(sys1)

Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.6847e+00 0.0000e+00 1.6847e+00 1.0000
-2.4383e+00 0.0000e+00 2.4383e+00 1.0000
-8.7457e+00 0.0000e+00 8.7457e+00 1.0000
-1.5041e+01 0.0000e+00 1.5041e+01 1.0000

Zeros:
ans (a scalar) = 0

Compare rifd to A matrix eigenvalues

[a,b,c,d] = abcd(sys1)
Aeigs = eig(a)?

Aeigs (a column vector) =

-1.68474
-2.43829
-8.7457

-15.0408

rifd(Aeigs)

real imaginary frequency damping
(rad/sec) ratio

-1.6847e+00 0.0000e+00 1.6847e+00 1.0000
-2.4383e+00 0.0000e+00 2.4383e+00 1.0000
-8.7457e+00 0.0000e+00 8.7457e+00 1.0000
-1.5041e+01 0.0000e+00 1.5041e+01 1.0000

rifd 337

sys2 = randsys(3,3,2,{stable,discrete})
rifd(sys2)

Poles:

radius angle
(radians)

0.9641 0.0000
0.2985 -0.5348
0.2985 0.5348

Zeros:

sdtrsp 339

sdtrsp

Syntax

[v,y,u] = sdtrsp(Sys,dSys,w,tfinal,...
{ord,intstep,cdelay})

Parameter List

Inputs: Sys Continuous dynamic system. This is the upper system in
the LFT. The initial states are used in the simulation.

dSys Digital dynamic system. Lower system in the LFT. The
initial states are used in the simulation.

w PDM. Input signal.
tfinal Final time in the simulation (optional). Default = max

time specified in w.

Keywords: ord Scalar valued. Specifies order of interpolation for continu-
ous signals in the system. Options are 0 or 1. Default =
0.

intstep Scalar valued. Integration step size. If not supplied a
default will be calculated based on the system eigenvalues.
It will be rounded to make it divide into the discrete system
sample time by an integer value of at least 2.

cdelay Scalar value. Delay implemented at the output to dSys.
(in sec.) Optional, default = 0. It must be less than the
digital system sample time.

Outputs: v Signal from upper system in the LFT.
y Signal into lower system in the LFT.
u Signal out of the lower system in the LFT.

340 Chapter 6. Function Reference

Description

Time domain simulation of a sampled data interconnection. The applicable closed loop
system is illustrated below.

Sys

dSys-

v w

y u

This is conceptually the equivalent of:

v = starp(Sys, dSys) ∗ w.

This function will handle interconnections in which the continuous time signals are not
necessarily synchronized with the digital system. Computation delays which are a
fraction of the sample period may also be simulated. The following equations represent
the discrete system,

z(kT + T) = Adz(kT) + Bdy(kT)
u(kT + cdelay) = Cdz(kT) + Ddy(kT)

For delays of greater than a sample period append additional states to dSys to model the
integer sample period part of the delay. Use cdelay to model the fractional remainder.

The actual calculation is performed with a fast discrete time equivalent. Intstep is the
fast integration step size. The input vector, w will be interpolated to the same step size.
Either a zero or first order interpolation is used, depending on the keyword ord. If ord =
0 a zero-order hold equivalent is used for the continuous plant. In the ord = 1 case a

sdtrsp 341

triangle hold equivalent is used. This is the same a linearly connecting the samples at
the input to the hold.

Some care is needed in the choice of cdelay and intstep. The default for intstep is based
on the continuous system eigenvalues and the minimum time spacing in the input vector,
w. It will be forced to be an integer divisor of the digital sample time. Intstep must also
be a divisor of cdelay. The user can inadvertently force a very small integration period
by selecting cdelay without regard to the sample period. Warnings are printed if this is
suspected to be the case.

The upper LTF block (continuous sytem) can be a constant matrix. The lower block
(digital system) must be a discrete dynamic system in order to specify the sampling
time. If a constant gain digital system is required specify it with,

dSys = system([], [], [], Dd, T).

Example:

Consider a continuous time plant,

P = 1/makepoly([1,0,-0.05],"s")
[a,b,c,d] = abcd(P)
P = system(a,b,c,d)
T = 1/20 # sample period

The following digital controller is used.
The first input is the reference and the # second is the
measurement.

digC = system([-1.5,T/4; -2/T,-.5],[.5,2;1/T,1/T],...
[-1/T^2,-1.5/T], [1/T^2,0],T)

Now consider a sample & hold version of P and
check that the closed loop digital system is stable
and has a reasonable step response.

digP = discretize(P,T,exponential)

snm = ["digP"; "digC"]

342 Chapter 6. Function Reference

inps = "ref"
outs = "digP"
cnx = ["digC"; ... # input to digP
"[ref;digP]"] # input to digC
digclp = sysic(snm,inps,outs,cnx,digP,digC)

Calculate the digital system step response

time = [0:T:20*T]
step = gstep(time,0,1)
digy = digclp*step

Do a complete sampled data simulation. We
will assume that the controller has an input to
output calculation delay of 0.1*T. The
plant will also have a non-zero initial
condition and a sinusoidal disturbance will
be imposed at the output. The disturbance has
deliberately been chosen at above the Nyquist
frequency.

#P = system(P,x0=[0.25;0]) # initial condition
calcdelay = 0.1*T # calculation delay
finetime = [0:0.005:1]
dist=0.25*gsin(finetime,frequency=11) # disturbance
step = gstep(finetime,0,1) # step

calculate the continuous time part of the
system as the upper LFT object.

ctssys = consys([0,1,1;1,0,0;0,1,1])*daug(1,1,P)
ctssys = system(ctssys,x0=[0.25;0])
ctsy = sdtrsp(ctssys,digC,[step;dist],...

cdelay=calcdelay)

gph1 = ctrlplot(ctsy);
gph1 = plot(gph1,digy,{line=0,marker=1,...
legend= ["sampled data calc.";"discrete calc."]})?

sdtrsp 343

0.2 0.4 0.6 0.80 1

-1

0

1

2

3

-2

4

sampled data calc.

discrete calc.

344 Chapter 6. Function Reference

See Also

trsp

simtransform 345

simtransform

Syntax

out = simtransform(sys,X)

Parameter List

Inputs: sys Input system. This may be a state-space system, pdm or
constant matrix.

X Similarity transform. X must be invertible

Outputs: out output system - in the same class as the input.

Description

Apply a similarity transform to sys. If sys is a matrix or pdm this gives out =
inv(X)*sys*X. If sys is a Dynamic System this transform is applied to the state.

Applying this transform to a transfer function is meaningless as a state matrix has not
been uniquely defined. This will return a warning and leave the transfer function
unchanged.

This command will remove the state names as they no longer have any meaning.

Example

sys1 = randsys(3,1,1,{stable})
rifd(sys1)

Poles:

real imaginary frequency damping
(rad/sec) ratio

346 Chapter 6. Function Reference

-1.9737e+01 0.0000e+00 1.9737e+01 1.0000
-9.7569e+00 -2.9129e+01 3.0720e+01 0.3176
-9.7569e+00 2.9129e+01 3.0720e+01 0.3176

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-2.1990e+01 0.0000e+00 2.1990e+01 1.0000
-9.7962e+00 -2.9186e+01 3.0786e+01 0.3182
-9.7962e+00 2.9186e+01 3.0786e+01 0.3182

[a,b,c,d] = abcd(sys1)

Do a schur transform on the A matrix
and use for a similarity transform on the system.

[as,X] = schur(a,{real})
sysout = simtransform(sys1,X)?

sysout (a state space system) =

A
-19.737 3.66249 4.10895

0 -9.75694 49.404
-8.88178e-16 -17.1748 -9.75694

B
1.11535
0.042032

-0.151334

C
1.17657 -0.369351 -0.163514

D
0.566721

simtransform 347

X0
0
0
0

Input Names

Input 1

Output Names

Output 1

System is continuous

spectrad 349

spectrad

Syntax

out = spectrad(mat)

Parameter List

Inputs: mat Square matrix or pdm.

Outputs: out spectral radius of the input.

Description

Calculates the spectral radius (magnitude of the maximum eigenvalue) of the input
matrix.

Example

pdm1 = randpdm(3,2,2,{zeromean})?

pdm1 (a pdm) =

domain | Col 1 Col 2
-------+------------------------------

0 | Row 1 0.0504605 -0.0914956
| Row 2 0.221744 -0.0231464

-------+------------------------------
1 | Row 1 0.139306 0.496387
| Row 2 -0.342521 0.0350694

-------+------------------------------
2 | Row 1 -0.287094 0.0591451
| Row 2 -0.0695034 -0.477195

-------+------------------------------

350 Chapter 6. Function Reference

eig(pdm1)?

ans (a pdm) =

domain |
-------+-------------------------------

0 | Row 1 0.013657 + 0.137601 j
| Row 2 0.013657 - 0.137601 j

-------+-------------------------------
1 | Row 1 0.0871876 + 0.409031 j
| Row 2 0.0871876 - 0.409031 j

-------+-------------------------------
2 | Row 1 -0.311974
| Row 2 -0.452314

-------+-------------------------------

spectrad(pdm1)?

ans (a pdm) =

domain |
-------+-----------

0 | 0.138277
-------+-----------

1 | 0.41822
-------+-----------

2 | 0.452314
-------+-----------

sresidualize 351

sresidualize

Syntax

sysout = sresidualize(sysin,ord)

Parameter List

Inputs: sysin Input Dynamic System

ord Order of sysout

Outputs: sysout output Dynamic System

Description

Residualize the states of sysin to the number specified by ord. The last nx−ord states
(nx is the number of states in sysin) are residualized. If ord is greater than the number
of states in sysin then sysout = sysin and a warning is displayed. sysin may be a
constant matrix, in which case it is treated as a system with zero states.

Example

Create a five state system for reduction.

a = daug(-0.891334,[-1.20857,0.799042;-0.799042,-1.20857],...
-4.74685,-21.3013)

b = [0.0262569;-0.189601;-0.113729;0.211465;-0.538239]
c = [0.120725,-0.336942,0.397198,-0.700524,-1.02235]
d = 0
sys1 = system(a,b,c,d)

Reduce to a 3 state system by residualization
and truncation.

352 Chapter 6. Function Reference

sysout1 = sresidualize(sys1,3)
sysout2 = truncate(sys1,3)

fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)
sysout1g = freq(sysout1,fHz)
sysout2g = freq(sysout2,fHz)
residerror = sys1g - sysout1g
truncerror = sys1g - sysout2g

gph1 = ctrlplot([sys1g,sysout1g,sysout2g,residerror,...
truncerror],{logmagplot});

gph1 = plot(gph1,{!grid,legend=["original system";...
"residualized system";"truncated system";...
"residualization error";"truncation error"]})?

sresidualize 353

Frequency

0.1 1 100.01 100

M
ag

ni
tu

de

0.0001

0.001

0.01

1e-05

0.1

original system

residualized system

truncated system

residualization error

truncation error

354 Chapter 6. Function Reference

See also

rifd, simtransform, orderstate modalstate, truncate.

starp 355

starp

Syntax

out = starp (upper,lower,dim1,dim2,skipChks)

Parameter List

Inputs: upper Upper object (Dynamic System, constant or pdm) in the
interconnection

lower Lower object in the interconnection.
dim1 The number of outputs of upper to be connected as inputs

to lower. (Optional - see description for default)
dim2 The number of outputs of lower to be connected as inputs

to upper. (Optional - see description for default)

Keywords: skipChks (Boolean, default = 0). Don’t check input arguments – this
includes type (Dynamic System, pdm) consistency and
fractional well posedness. For pdms, the well posedness
test may involve significant computation.

Outputs: out Resulting interconnection.

Description

Connects two objects in a Redheffer “star product,” as illustrated in the following
diagram.

This results in the following system.

Constant matrices can be interconnected with either pdms or dynamical systems. As
expected a Dynamic System and a pdm cannot be interconnected in this way.

If dim1 and dim2 are omitted, it is assumed that a linear fractional transformation is

356 Chapter 6. Function Reference

specified. This is equivalent to:

dim1 = min(upper output dim, lower input dim)

and

dim2 = min(upper input dim, lower output dim).

Examples

Look at a constant matrix,

M = random(4,4)
lower = [3,4]

The interconnected LFT will have 2 rows and 3 columns

result = starp(M,lower)?

result (a rectangular matrix) =

0.261939 -0.558202 0.484644
-0.648616 -1.11273 0.107883

This is equivalent to:

M11 = M(1:2,1:3)
M12 = M(1:2,4)
M21 = M(3:4,1:3)
M22 = M(3:4,4)
M11 + M12*lower*inv(eye(2,2)-M22*lower)*M21?

ans (a rectangular matrix) =

0.261939 -0.558202 0.484644
-0.648616 -1.11273 0.107883

A much more common usage is to provide an interconnection

starp 357

structure for closing control loops. The following is
the structure for a simple unity gain negative feedback
system with plant P.

P = 1/makepoly([1,1],"s")
M = consys([0,1;1,-1])*daug(1,P)

Test this with a Proportional and PI controller

Kp = 10
KpInt = makepoly([10,100],"s")/makepoly([1,0],"s")

rifd(starp(M,Kp)) # look at poles and zeros

Poles:

real imaginary frequency damping
(rad/sec) ratio

-1.1000e+01 0.0000e+00 1.1000e+01 1.0000

Zeros:

rifd(starp(M,KpInt))

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.5000e+00 -8.3516e+00 1.0000e+01 0.5500
-5.5000e+00 8.3516e+00 1.0000e+01 0.5500

Zeros:

real imaginary frequency damping
(rad/sec) ratio

358 Chapter 6. Function Reference

-1.0000e+01 0.0000e+00 1.0000e+01 1.0000

Now consider the system with an output multiplicative
perturbation (of 10%)

W = consys(0.1)
G = daug(W,1,1)*consys([0,0,1;1,0,1;-1,1,-1])*daug(1,1,P)

The nominal system is constructed by closing the
upper loop with 0. Any thing else is a perturbed
system.

Gnom = starp(0,G)
Gpert = starp(-1,G)

Now examine the closed loop affects for the PI
controller.

rifd(starp(Gnom,KpInt)) # same as before

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.5000e+00 -8.3516e+00 1.0000e+01 0.5500
-5.5000e+00 8.3516e+00 1.0000e+01 0.5500

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-1.0000e+01 0.0000e+00 1.0000e+01 1.0000

rifd(starp(Gpert,KpInt)) # perturbation moves the poles.

starp 359

Poles:

real imaginary frequency damping
(rad/sec) ratio

-5.0000e+00 -8.0623e+00 9.4868e+00 0.5270
-5.0000e+00 8.0623e+00 9.4868e+00 0.5270

Zeros:

real imaginary frequency damping
(rad/sec) ratio

-1.0000e+01 0.0000e+00 1.0000e+01 1.0000

substr 361

substr

Syntax

littlestring = substr(bigstring,charindex,{skipChks})

Parameter List

Inputs: bigstring Input string (a 1×1 string matrix)
charindex vector indexing the characters to be returned in the output.

Keywords: skipChks Boolean specifying that syntax checking is to be skipped.

Outputs: littlestring Output string

Description

substr takes characters from the string, bigstring and concatentates them to from the
output, littlestring. The vector, charindex, determines the characters and their
order.

This function allows the user to select substrings from an input string. However, as
shown in the example, there is no requirement that the characters specified in charindex
be contiguous or non-repeated.

To find a specified character in a string use the function: index.

Example

alphabet = " abcdefghijklmnopqrstuvwxyz"
mantra = substr(alphabet,[14,22,1,19,22,13,6,20])?

sysic 363

sysic

Syntax

[sys] = sysic(sysNames,sysInputs,sysOutputs,sysConnects,...
subsys1,subsys2,...)

Parameter List

Inputs: sysNames A vector of strings (of the same length as the number of
subsystems) naming the subsystems.

sysInputs A vector of strings naming the exogenous inputs to the
final system. Each named input must be a different row
— however parenthesis can be used to denote vector valued
input names.

sysOutputs A vector of strings defining the exogenous outputs of the
final system. These are defined in terms of input names or
subsystem outputs.

sysConnects A vector of strings (of the same length as the number of
subsystems) defining the input to each subsystem.

subsys1 Subsystems to be connected. The subsystems can be com-
binations of matrices and dynamic systems or combina-
tions of matrices and pdms.

... “

Outputs: sys The interconnected system, which can be either a dynamic
system, a pdm, or a matrix depending on the subsystems.

Description

sysic interconnects subsystems to form a single, larger system. The interconnection
specification strings and the actual subsystems are passed as arguments to sysic. In
this context, systems can be either Dynamic Systems or pdms. An interconnection
with both Dynamic Systems and pdms is not well defined and will generate an error.

364 Chapter 6. Function Reference

Matrices can also be included in the interconnection and are considered to be constant
gains when connected with Dynamic Systems and considered to be constant for all
domain values when connected with pdms.

sysic is able to connect linear systems together. For more complete interconnection and
simulation capabilities SystemBuild should be used.

Limitations

Only 20 subsystems can be interconnected with a single sysic call.

Example

A standard unity gain negative feedback system
is set up. To illustrate some of the capabilities
an output noise and plant input disturbance are also
added. The output signals are the plant output,
controller effort and 10 x reference error.

p = 1/makepoly([1,0.1,1],"s")
c = makepoly([1,1],"s")/makepoly([1,10],"s")

snames = ["p"; # name for subsystem 1
"c"]

inputs = ["ref"; # the name is arbitrary
"dist(2)"] # this input is a dim 2 vector

outputs = ["p + dist(1)"; # note reference to first dist input
"c";
"10*ref - 10*p"] # linear combinations can be used

conx = ["c + dist(2)"; # input to snames(1), i.e. "p"
"ref - p - dist(1)"] # input to "c"

clp = sysic(snames,inputs,outputs,conx,p,c)

trsp 365

trsp

Syntax

[y,uint] = trsp(Sys,u,tfinal, ord,intstep)

Parameter List

Inputs: Sys Continuous dynamic system. The initial states are used in
the simulation.

u PDM. Input signal.
tfinal Final time in the simulation (optional). Default = max

time specified in u.

Keywords: ord Scalar valued. Specifies order of interpolation for continu-
ous signals in the system. Options are 0 or 1. Default =
0.

intstep Scalar valued. Integration step size. If not supplied a
default will be calculated based on the system eigenvalues.
It will be rounded to make it divide into the discrete system
sample time by an integer value of at least 2.

Outputs: y PDM. Output signal.
uint Interpolated version of u.

Description

Time domain simulation of a continuous system. This is conceptually the equivalent of:

y = Sys ∗ u.

This function allows the user more control over the parameters in the simulation.

The user can select an integration step (intstep) independently of the data spacing in
u. Furthermore, the spacing of u can be non-regular and u will be interpolated if

366 Chapter 6. Function Reference

necessary. If intstep is not specified the integration stepsize is determined from the
system eigenvalues and the minimum spacing in the input signal, u.

A zero or first order discrete equivalent of the systems can be specified. The standard
Xmath * operator uses only a zero order discretization. The first order simulation
actually uses a triangle hold equivalent. This is equivalent to connecting the samples
going into the hold function. Although the continuous time hold is noncausal the
discrete state-space system is causal. This is often more accurate at higher frequencies.

Examples

We will use trsp to simulate the output of
a second order system for various inputs

P = 400/makepoly([1,10,400],"s")

time = [0:0.25:2]
u = gstep(time,time,[0,1,0,-1,0,1,0,-1,0])

Examine the standard Xmath simulation

y = P*u
gph1 = ctrlplot(y);
gph1 = plot(u,gph1,{marker=1,line=0,legend=["output";"input"]})?

trsp 367

0.5 1 1.50 2

-1

-0.5

0

0.5

1

-1.5

1.5

output

input

368 Chapter 6. Function Reference

Compare trsp calculation to standard
[ytrsp,uint] = trsp(P,u)
gph2 = ctrlplot(ytrsp);
gph2 = plot(y,gph2,{line style=4});
gph2 = plot(u,gph2,{line=0,marker=1});
gph2 = plot(uint,gph2,{line style=3,legend=["trsp calc.";...

"* calc.";"input";"interpolated input"],title=...
"Time response calculation comparisons"})?

trsp 369

0.5 1 1.50 2

-1

-0.5

0

0.5

1

-1.5

1.5

Time response calculation comparisons

trsp calc.

* calc.

input

interpolated input

370 Chapter 6. Function Reference

Now look at 1st order interpolation

[y1trsp,u1int] = trsp(P,u,{ord=1})
gph3 = ctrlplot([y1trsp,u1int]);
gph3 = plot(u,gph3,{line=0,marker=1,legend=...

["1st order interpolation";...
"interpolated input";"input data"],title=...
"Time response calculation comparisons"})?

trsp 371

0.5 1 1.50 2

-1

-0.5

0

0.5

1

-1.5

1.5

Time response calculation comparisons

1st order interpolation

interpolated input

input data

sresidualize 373

truncate

Syntax

sysout = truncate(sysin,ord)

Parameter List

Inputs: sysin Input Dynamic System

ord Order of the truncated system: sysout

Outputs: sysout Truncated output Dynamic System

Description

The function truncate is cross-licensed from the model reduction toolbox and has
slightly more capabilities than those described here. See the online help for further
details.

Consider a partitioning of the input Dynamic System, sysin, as follows.

sysin =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 ,

where A11 is of dimension ord × ord. The truncated output Dynamic System, sysout
is simply,

sysin =
[

A11 B1

C1 D

]
.

374 Chapter 6. Function Reference

Example

This example is identical to that described for sresidualize and compares the two
methods of model reduction.

Create a five state system for reduction.

a = daug(-0.891334,[-1.20857,0.799042;-0.799042,-1.20857],...
-4.74685,-21.3013)

b = [0.0262569;-0.189601;-0.113729;0.211465;-0.538239]
c = [0.120725,-0.336942,0.397198,-0.700524,-1.02235]
d = 0
sys1 = system(a,b,c,d)

Reduce to a 3 state system by residualization
and truncation.

sysout1 = sresidualize(sys1,3)
sysout2 = truncate(sys1,3)

fHz = logspace(0.01,100,100)
sys1g = freq(sys1,fHz)
sysout1g = freq(sysout1,fHz)
sysout2g = freq(sysout2,fHz)
residerror = sys1g - sysout1g
truncerror = sys1g - sysout2g

gph1 = ctrlplot([sys1g,sysout1g,sysout2g,residerror,...
truncerror],{logmagplot});

gph1 = plot(gph1,{!grid,legend=["original system";...
"residualized system";"truncated system";...
"residualization error";"truncation error"]})?

sresidualize 375

Frequency

0.1 1 100.01 100

M
ag

ni
tu

de

0.0001

0.001

0.01

1e-05

0.1

original system

residualized system

truncated system

residualization error

truncation error

376 Chapter 6. Function Reference

See also

rifd, simtransform, sresidualize, orderstate modalstate.

6.2. Xµ SUBROUTINES AND UTILITIES 377

6.2 Xµ Subroutines and Utilities

Several subroutines may also be of interest to the user. These subroutines typically
perform self contained parts of a calculation. They may be of interest to those
developing new robust control algorithms or wishing to study the calculation details of
the algorithms given here. Beware of the fact that these subroutines may not contain
error checking.

These subroutines are included in alphabetical order and are cross-referenced by their
calling functions in the following list.

hinfsyn subroutines

hinfcalc . 381

riccati eig . 387

riccati schur . 389

mu subroutines

blkbal . 379

powermu . 385

blkbal 379

blkbal

Syntax

d = blkbal(M)

Description

Balances a square matrix assuming only scalar blocks. The Osborne method (growth
rate: n2) is used for large systems and the Perron method (growth rate: n3) for smaller
systems. The Perron method will exactly calculate mu for positive matrices.

hinfcalc 381

hinfcalc

Syntax

[X,Y,f,h,Ric fail,HX,HY,HXmin,HYmin] = ...
hinfcalc(p,nmeas,ncon,g,epr,{keywords})

382 Chapter 6. Function Reference

Parameter List

Inputs: p Generalized interconnection structure (Dynamic Sys-

tem)
nmeas measurement vector dimension.
ncon control vector dimension.
g H∞ norm of suboptimal controller to be calculated. Re-

ferred to in the literature as gamma.
epr Tolerance for determining when the Hamiltonian eigenval-

ues lie on the jω-axis.

Keywords: schur solution real Schur decomposition for Riccati solution (default)
eig solution eigendecomposition for Riccati solution.

Outputs: X Riccati solution
Y Riccati solution
Ric fail status of solution:

0 Solution found.
1 jω axis eigenvalues in Hamiltonian
2 Unequal number of +ve & -ve eigenvalues in

Hamiltonian. This represents a numerical failure
in the eigenvalue ordering.

3 Both of the above errors detected.
f Intermediate calculation for scaling and normalization
h Intermediate calculation for scaling and normalization
HX X Hamiltonian
HY Y Hamiltonian
HXmin Minimum absolute value of the real part of the X Hamilto-

nian eigenvalues. In other words, how close to the jω axis
the eigenvalues lie.

HYmin Minimum absolute value of the real part of the Y Hamil-
tonian eigenvalues.

hinfcalc 383

Description

Form and solve the Riccati equations for the H∞ control problem. X and Y are the
resulting Riccati solutions.

THIS FUNCTION IS INTENDED ONLY AS A SUBROUTINE CALLED BY THE
HINFSYN FUNCTION.

*** NO ERROR CHECKING ***

powermu 385

powermu

Syntax

[lbnd,delta,errstat] = powermu(M,blk,rp,cp)

Description

Lower bound power algorithm based on the work of Andy Packard. The vector naming
roughly corresponds to that in his thesis.

*** NO ERROR CHECKING ***

riccati eig 387

riccati eig

Syntax

[x1,x2,stat,Heig min] = riccati eig(H,epp)

Parameter List

Inputs: H Hamiltonian matrix.
epp Tolerance for detecting proximity of eigenvalues to the jω

axis.

Outputs: x1,x2 Basis vectors for stable subspace. See description below.
stat Status flag.

0 Stable subspace calculated.
1 Failure to decompose into stable and

unstable subspaces.
Heig min Minimum absolute value of the real part of the eigenvalues

of H .

Description

Solve the algebraic Riccati equation,

A′X + XA + XRX − Q = 0,

by an eigenvalue decomposition method. The Hamiltonian, H , contains the Riccati
equation variables in the matrix,

H =
[

A R
Q −A′

]
.

If H has no jω axis eigenvalues then there is an n dimensional (n = dim(A)) stable
subspace of H . The vector, [x1 x2] spans that stable subspace and, if x1 is invertible, the

388 Chapter 6. Function Reference

variable, X = x2x
−1
1 , is the stabilizing solution to the Riccati equation.

If H has jω axis eigenvalues then no stabilizing solution exists and the function returns a
failure status. If any eigenvalue of H is within epp of the jω axis it is considered to lie on
the jω axis and no solution is found. This may be due to numerical problems in finding
the eigenvalues of poorly conditioned problems even when a stabilizing solution exists.

See Also

Riccati, riccati schur

riccati schur 389

riccati schur

Syntax

[x1,x2,stat,Heig min] = riccati schur(H,epp)

Parameter List

Inputs: H Hamiltonian matrix.
epp Tolerance for detecting proximity of eigenvalues to the jω

axis.

Outputs: x1,x2 Basis vectors for stable subspace. See description below.
stat Status flag.

0 Stable subspace calculated.
1 Failure to decompose into stable and

unstable subspaces.
Heig min Minimum absolute value of the real part of the eigenvalues

of H .

Description

Solve the algebraic Riccati equation,

A′X + XA + XRX − Q = 0,

by a real Schur decomposition method. The Hamiltonian, H , contains the Riccati
equation variables in the matrix,

H =
[

A R
Q −A′

]
.

If H has no jω axis eigenvalues then there is an n dimensional (n = dim(A)) stable
subspace of H . The vector, [x1 x2] spans that stable subspace and, if x1 is invertible, the

390 Chapter 6. Function Reference

variable, X = x2x
−1
1 , is the stabilizing solution to the Riccati equation.

If H has jω axis eigenvalues then no stabilizing solution exists and the function returns a
failure status. If any eigenvalue of H is within epp of the jω axis it is considered to lie on
the jω axis and no solution is found. This may be due to numerical problems in finding
the eigenvalues of poorly conditioned problems even when a stabilizing solution exists.

See Also

Riccati, riccati eig

Appendices

A Translation Between Matlab µ-Tools and Xµ

This appendix outlines the functional equivalences between the Matlab µ-Tools and
Xmath Xµ. The objective is to provide a smooth transition for users moving from
µ-Tools to Xµ. We will assume that the reader is familiar with Matlab µ-Tools and the
general operation of Xmath. The intent is that the overall functional capabilities are the
same under either system and a prospective robust control designer chooses between
Matlab, Xmath, or future matrix languages, on other issues (cost, support, software
compatibility, etc.).

There are enough similarities between µ-Tools and Xµ that one can move from one to the
other without a great deal of additional learning. Most of the differences are syntactic.
There is not always a direct function for function match between the two systems.

The major differences are:

• The built-in data structures available with Xmath.

• The discrete-time system is available as an Xmath data object.

• Slightly different function names.

• The mu and musynfit functions handle the scaling and perturbation matrices in
matrix, rather than coded vector, form.

• The implementation of the D-K iteration is slightly different.

391

392 APPENDICES

The functionally equivalent commands will be listed, in each sub-section, for
convenience. A more detailed discussion is given to illustrate the more subtle differences
in the mu and D-K iteration aspects. More importantly, the Himat demo is available in
both µ-Tools and Xµ. For a fast start on moving between platforms, study these demos
side by side.

A.1 Data Objects

The underlying data structure in Matlab is the complex valued matrix, whereas in
Xmath there various other objects available: polynomials, transfer functions, parameter
dependent matrices, and dynamic systems.

system/Dynamic System Functions

The µ-Tools functions for creating and manipulating the systemmatrix have no Xµ
equivalent as the underlying Xmath operators can directly handle the dynamic system
and transfer function data objects.

Also residing within the Xmath state-space object is the initial state. This is used
primarily for time response calculations. It is debatable whether or not the initial state
is an intrinsic attribute of the system as one frequently changes it for simulation. It does
have the advantage of reducing the time response calculation to a simple multiplication
and it can easily be changed without accessing all of the other system variables.

The following table illustrates the equivalent functions, or indicates the data objects
which provide the same functionality.

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 393

Description µ-Tools Function Xmath/Xµ equivalent
form system pck system
decompose system unpck abcd
form system nd2sys transfer function data objects
form system zp2sys transfer function data objects
decompose system sys2pss dynamic system data objects
form system pss2sys dynamic system data objects
random system sysrand randsys
generate filters mfilter butterworth, chebyshev
fit transfer functions drawmag fitsys, tfid

The µ-Tools drawmag function provides an interactive graphical interface. There is
currently no equivalent in Xµ. The equivalent underlying data fitting algorithm can be
found in the Xµ function fitsys.

varying/pdm Functions

The equivalent functions for construction and manipulation of pdm data objects are
shown below.

Description µ-Tools Function Xmath/Xµ equivalent
form varying vpck pdm
break up varying vunpck makematrix
get ivs. getiv domain
join varying tackon concatseg, insertseg, mergeseg
sort by iv. sortiv mergeseg
select by iv. value xtract extractseg, indexlist, find
select by index xtracti indexing by pdm(i)
scale iv. scliv domain, pdm
compare ivs. indvcmp check
random varying varyrand randpdm

As an aside, note that the sort function in Xmath sorts each column of each matrix in a
pdm, rather than sorting the domain.

394 APPENDICES

Subblocks: selecting input & outputs

In µ-Tools the function sel selects rows and columns from a varying matrix or inputs
and outputs from a system matrix. In Xmath these can be obtained by specifying row
and column indexes. More flexibility of selecting parts of a pdm can be obtained by
using the indexlist function.

Augmentation

Augmentation is the building of matrices from component pieces. The µ-Tools
commands which perform these functions are given in the table below. For pdms or
Dynamic Systems in Xmath these operations are generally performed identically to
the equivalent matrix operation.

Description µ-Tools Function Xmath/Xµ equivalent
vertical augmentation abv ;
horizontal augmentation sbs ,
diagonal augmentation daug daug

Algebraic Operations

Similarly, algebraic operations on system or varying matrices in µ-Tools require a
dedicated function. In the Xmath case the usual matrix operation suffices.

Description µ-Tools Function Xmath/Xµ equivalent
addition madd +
subtraction msub -
multiplication mmult *
system scaling mscl *
system scaling sclin *
system scaling sclout *
system inverse minv inv
transpose transp ’
conjugate transpose cjt *’

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 395

Note that the transpose and conjugate transpose operators are defined differently for
Matlab and Xmath.

system/Dynamic System Functions

The following functions perform useful manipulations to, or information about, the state
of a system or Dynamic System.

Description µ-Tools Function Xmath/Xµ equivalent
calculate poles spoles poles
calculate zeros szeros zeros
display poles rifd rifd
state similarity transform statecc simtransform
reorder state reordsys orderstate
transform to modal format strans modalstate
zero order hold equivalent samhld discretize
Prewarped bilinear transform tustin discretize

varying/pdm Functions

A large number of varying matrix operations have been written in µ-Tools. These are
not required in the Xmath version as most of the functions operate on pdms as well as
matrices. The following table lists these functions for µ-Tools and Xmath. These are
only approximate functional equivalents — the more complicated functions differ in
some important respects.

396 APPENDICES

Description µ-Tools Function Xmath/Xµ equivalent
peak norm pkvnorm norm, max
absolute value vabs abs
diagonal matrix vdiag diagonal
round downwards vfloor round
round upwards vceil round
imaginary part vimag imag
real part vreal real
complex conjugate vconj conj
norm vnorm norm
determinant vdet det
eigenvalues veig eig
inverse vinv or minv inv
left division vldiv \
right division vrdiv /
pseudo-inverse vpinv pinv
spectral radius vrho spectrad
singular values vsvd svd
condition number vrcond rcond or condition
schur decomposition vschur schur
matrix exponential vexpm expm
interpolation vinterp interp or interpolate
decimation vdcmate pdm(vector)
FFT vfft fft
inverse FFT vifft ifft
spectral analysis vspectrum spectrum

Beware of syntactical differences here. One obvious example is the order in which the
eigenvalues and eigenvectors are returned from veig and eig. Note also the vrcond
returns the inverse of the condition number whereas condition returns the condition
number.

The µ-Tools function vebe performs element-by-element function operations on a
varying matrix. This has no counterpart in Xµ as the basic functions which operate on
each element of a matrix (e.g. sin, cos, abs) are also defined on pdms in Xmath. For the
same reason, the µ-Tools function veval has no Xµ counterpart: the Xmath execute
command can be used to the same effect.

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 397

Miscellaneous Utilities

Several utilities are provided in µ-Tools. These are subroutines used by other µ-Tools
functions which may be of more general use.

Description µ-Tools function Xmath/Xµ equivalent
complex random number crand randpdm
fit system to data fitsys fitsys
Eigenvalue based Riccati solution ric eig riccati eig
Schur based Riccati solution ric schr riccati schur

A.2 Matrix Information, Display and Plotting

Xmath provides matrix/data object size information via a variable window. There is no
Matlab equivalent for this functionality. Command window information can be
obtained via the following functions.

Description µ-Tools function Xmath/Xµ equivalent
matrix information minfo check, size, is
list workspace whos who

Plotting of varying matrices is provided by the Matlab µ-Tools function vplot. As
pdms are a native data object in Xmath, the standard Xmath plot function will
correctly plot a pdm. Multiple calls will overlay the data, even if the domains differ. The
Xµ function ctrlplot is provided for more control specific plots: Bode, Nyquist,
Nichols, log magnitude, etc..

Both Matlab and Xmath allow interactive manipulation of the graphical data and
storage and retrieval of plots from the workspace or the underlying file system.

398 APPENDICES

A.3 System Response Functions

Creating Time Domain Signals

The Xmath pdm data object allows the creation of time domain signals via standard
and operators.

Description µ-Tools function Xmath/Xµ equivalent
cosine waveform cos tr cos
sine waveform sin tr sin
stair-step waveform step tr gstep
general waveform siggen standard functions & operators

Time Responses

Xmath calculates time responses with the * operation. However, the Xµ function trsp
provides significantly more functionality in the continuous time case. The equivalences
are summarized below.

Description µ-Tools function Xmath/Xµ equivalent
continuous time response trsp trsp, *, deftimerange
discrete time response dtrsp *
sampled data response sdtrsp sdtrsp

Frequency Responses

The relevant functions are shown below.

Description µ-Tools function Xmath/Xµ equivalent
frequency response frsp freq
logarithmic vector logspace logspace

The default frequency units in µ-Tools are radians/second whereas those in Xmath are
Hertz. This applies generically to all commands where the user specifies frequency

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 399

information.

A.4 System Interconnection

Simple interconnection has already been outlined in the augmentation section above.
The more complicated interconnection functions are almost identical in µ-Tools and Xµ.
The only real difference is the calling syntax of sysic.

Description µ-Tools function Xmath/Xµ equivalent
Redheffer (star) product starp starp
system interconnection sysic sysic

A.5 Model Reduction

The model reduction functions in Xµ are:

Description µ-Tools function Xmath/Xµ equivalent
residualization sresid sresidualize
state truncation strunc truncate
balanced realization sysbal balance
Hankel norm reduction hankmr ophank

The following frequency weighted model reduction functions have no equivalent in the
current version of Xµ. It is intended to introduce this functionality in the next version.
The functions are: sdecomp, sfrwtbal, sfrwtbld, sncfbal and srelbal.

A.6 H2 and H∞ Analysis and Synthesis

The synthesis algorithms are identical and the syntax are similar.

400 APPENDICES

Description µ-Tools function Xmath/Xµ equivalent
H2 norm calculation h2norm h2norm
H∞ norm calculation hinfnorm hinfnorm
H2 controller synthesis h2syn h2syn
H∞ controller synthesis hinfsyn hinfsyn

The major syntactical difference is that the Xµ functions do not return the closed loop
system. This is easily calculated by a subsequent call to starp. The reason for this is
that the D-K iteration changes typically involve a differently weighted closed loop
system in subsequent operations. Having a separate calculation of the closed loop
reduces the potential for confusion.

The µ-Tools function hinffi has no Xmath/Xµ equivalent. This function calculates the
full information H∞ controller. hinfsyn solves the more general problem and is of more
practical use in controller applications.

A.7 Structured Singular Value (µ) Analysis and Synthesis

The issue of whether or not the frequency domain variable is radian/second or Hertz
arises here. Although this makes no difference to the calculation of µ is affects how the
D scales and ∆ perturbations are interpolated. µ-Tools assumes that the frequency scale
is radians/second. In Xµ the default assumption is Hertz. The reason for this is that
Hertz is the default output of the frequency response calculation freq. In all cases
where it makes a difference, the user can specify the keyword {!Hertz} to switch the
meaning of the domain.

Calculation of µ

There is a difference in the returned variable format for the Xµ function mu. The
Matlab function returns the D-scale and perturbations in coded vector form. The Xµ
mu function returns both the D scale and its inverse in matrix form. The relevant
functions are summarized below.

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 401

Description µ-Tools function Xmath/Xµ equivalent
structured singular value mu mu
D scale decoding unwrapd not required
perturbation decoding unwrapp not required
block norm calculations blknorm blknorm
rational perturbation dypert mkpert
random perturbations randel randpert

In the Xµ mu function, only the default options of the µ-Tools mu calculations are
available. In other words, a power iteration, with several random restarts, is used for the
lower bound. The upper bound calculation uses an Osborne balancing method and
enhances this with the Perron vector method for problems with less than 10 blocks.
These methods have been found to be appropriate for the vast majority of practically
motivated problems.

New algorithms for these calculations are currently under development. The most
significant enhancement is the ability to calculate µ with respect to structures which
include real valued blocks. Because of the development effort in this direction, a wide
range of calculation options were not provided for the current Xµ mu function.

The scalar × identity block structure is not currently supported in the Xµ mu function.
It will be included in the revised version discussed above.

The D-K Iteration

There is a significant difference in the way that Xµ handles the D-K iteration. The D
scales are not incrementally factored into the previous iteration D-scales. Consider the
initial design interconnection structure to be ic. An H∞ design will produce the first
controller: k1, using a function call like the following.

k1 = hinfsyn(ic,nmeas,ncon,gamma)

The closed loop system, obtained via

g1 = starp(ic,k1)

is then analyzed with mu. The typical function call is:

402 APPENDICES

g1g = freq(g1,omega)
[mubnds,Dmagdata] = mu(g1g,blk)

From this, frequency domain D-scales are obtained, and a rational approximation is
obtained via musynfit.

[Dsys,Dinvsys] = musynfit(Dmagdata,blk,nmeas,nctrls,weight,g1g)

A difference between the Xµ and µ-Tools implementations of musynfit is that, in the
Xµ case, the inverse scaling system, Dinvsys, is generated by musynfit. Notice also
that the previous D-scale fit is not passed as an argument.

The new, D-scale weighted interconnection structure, ic2, is formed by,

ic2 = Dsys*ic*Dinvsys

A second design, k2, is now obtained with hinfsyn. Up to this point, the µ-Tools and
Xµ procedures are essentially the same.

The major difference is that the appropriate closed loop system is now formed with ic,
not ic2. In other words,

g2 = starp(ic,k2)

Note that ic and ic2 differ only by the D-scales and therefore µ(g2) would be the same
whether ic or ic2 were used for the closed loop system.

Now mu is used to analyze the frequency response ofg2, giving rise to a new set of
D-scales. Again, musynfit is used to fit state-space systems to these D-scales, giving
rise to D2sys and D2invsys. Now the next interconnection structure, ic3, is formed by
using these D-scales with the original interconnection. In command line form:

ic3 = D2sys*ic*D2invsys

Note that at each step, ic, is used to calculate the closed loop system, and also used to
calculate the next design interconnection structure.

A. TRANSLATION BETWEEN MATLAB µ-TOOLS AND Xµ 403

The advantage of this is that in order to restart, or reproduce, an iteration, one need
only save the previous controller. The µ-Tools approach requires saving the rational
approximation to the previous D-scales. The controller is a more applicable data object
to save and the saving of the previous D-scales depends on the quality of the rational
approximation. The disadvantage is that the upper bound in the next µ calculation
takes slightly longer as the closed-loop system does not have the numerical benefit of the
effects of the previous D-scales. The speed difference is likely to be insignificant in
practical problems.

Fitting D Scales

Rational transfer function fitting of magnitude data is required for the D-K iteration
and has been mentioned above. The relevant functions are summarized here.

Description µ-Tools function Xmath/Xµ equivalent
fit D scale data musynfit musynfit
phase calculation genphase mkphase
transfer function fitting fitsys fitsys, tfid

Note that the µ-Tools version of musynfit does not use the previous D scale magnitude
data. This has implications in the D-K iteration and is discussed in more detail above.

The alternative µ-Tools linear programming approach for D scale fitting, musynflp, is
not supported in Xµ. Similarly, the underlying linear programming approach to transfer
function fitting (µ-Tools functions fitmaglp, magdata) is not available in Xµ. The batch
functionality of the µ-Tools function, muftbtch, is available in the Xµ version of
musynfit.

Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

	Xmath Xµ Module
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	Chapter 1 Introduction and Overview
	1.1 Notation
	1.2 Manual Outline
	1.3 How to avoid really reading this Manual

	Chapter 2 Overview of the Underlying Theory
	2.1 Introduction
	2.2 Modeling Uncertain Systems
	2.3 H-infinity and H-2 Design Methodologies
	2.4 Mu Analysis
	2.5 Mu Synthesis and D-K Iteration
	2.6 Model Reduction

	Chapter 3 Functional Description of Xmu
	3.1 Introduction
	3.2 Data Objects
	3.3 Matrix Information, Display and Plotting
	3.4 System Response Functions
	3.5 System Interconnection
	3.6 H-2 and H-infinity Analysis and Synthesis
	3.7 Structured Singular Value (Mu) Analysis and Synthesis
	3.8 Model Reduction

	Chapter 4 Demonstration Examples
	4.1 The Himat Example
	4.2 A Simple Flexible Structure Example

	Chapter 5 Bibliography
	Chapter 6 Function Reference
	6.1 Xmu Functions
	6.2 Xmu Subroutines and Utilities

	Appendix A Translation Between MATLAB Mu-Tools and Xmu
	A.1 Data Objects
	A.2 Matrix Information, Display and Plotting
	A.3 System Response Functions
	A.4 System Interconnection
	A.5 Model Reduction
	A.6 H-2 and H-infinity Analysis and Synthesis
	A.7 Structured Singular Value (Mu) Analysis and Synthesis

	Technical Support and Professional Services

